
Component-based Approach for Programming

and Running Scientific Applications on Grids and

Clouds

Maciej Malawski1, Tomasz Guba la2,3, Marian Bubak1,3

1Institute of Computer Science, AGH,

Mickiewicza 30, 30-059 Kraków, Poland

2ACC CYFRONET-AGH

Nawojki 11, 30-950 Kraków, Poland

3Informatics Institute, Universiteit van Amsterdam,

1081 HV Amsterdam, The Netherlands

Email: {malawski,bubak}@agh.edu.pl



Abstract

The paper presents an approach to programming and running scien-

tific applications on the grid and cloud infrastructures based on two prin-

ciples: the first one is to follow a component-based programming model,

the second is to apply a flexible technology which allows virtualizing the

underlying infrastructure. The solutions described in this paper include

high-level composition and deployment consisting of a scripting-based en-

vironment and a manager system based on an architecture description

language, dynamically-managed pool of component containers, interop-

erability with other component models such as Grid Component Model

(GCM) [Baude et al. , 2009]. We demonstrate how the proposed method-

ology can be implemented by combining the unique features of the Com-

mon Component Architecture (CCA) [Armstrong et al. , 2006] model to-

gether with the H2O [Kurzyniec et al. , 2003] resource sharing platform,

resulting in MOCCA component framework [Malawski et al. , 2005]. Ap-

plications and tests include data mining using Weka library, Monte Carlo

simulation of formation of clusters of gold atoms, as well as a set of syn-

thetic benchmarks. The conclusion is that the component approach to

scientific applications can be successfully applied to both grid and cloud

infrastructures.

Keywords: grid computing, cloud computing, component program-

ming, programming model, distributed application



1 Introduction

Recently, such paradigms of scientific investigations, as e-Science and system-

level science, have been established [Foster & Kesselman, 2006]. E-Science ap-

plications have many common properties: they are compute- and data-intensive,

custom-developed by scientists using many programming languages, and used

in dynamic scenarios – experiments – which involve various levels of coupling

and composition types such as parallel or workflow processing. Grid infras-

tructures like EGI, DEISA, Grid’5000, Open Science Grid, TeraGrid, are now

considered the key technological platforms enabling the realization of the e-

science paradigm [Schwiegelshohn et al. , 2010]. Additionally, there is an evolu-

tion from simple computing (metacomputing) infrastructures supporting batch

processing to more advanced software systems which provide high-level services.

Recently, cloud computing gains attention from the point of view of scientific ap-

plications [Vecchiola et al. , 2009, Deelman, 2010]. Problems such as access to

computation, deployment and application management still remain a challenge,

due to some inherent features of the grid and cloud environments.

The main objective of research presented in this paper can be stated as

follows: How to program and run e-science applications on the grid and cloud

infrastructures? Although significant effort is being invested in research on

programming models, tools and environments, the problem remains challeng-

ing [NGG Group, 2004]. The answer to this question will result in a method-

ology, consisting of a set of methods and tools, possibly integrated into a pro-

gramming environment characterized by the following features: (1) facilitating

high-level programming; (2) facilitating deployment on shared resources; (3)

scalable to diverse environments; (4) communication adjusted to various levels

of coupling; (5) adapted to the unreliable distributed environment; (6) interop-

erable; (7) secure.



This methodology requires an appropriate high-level programming and exe-

cution environment based on an appropriate programming model and supported

by specific tools and services. An environment supporting these features will

simplify the usage of complex computing infrastructures for people involved in

e-Science. In this paper, we describe how such an environment can be built

following the component-based approach and we explain why we have chosen

CCA as a component standard. In order to provide a virtualization layer to the

environment, we selected H2O resource sharing platform which gives us several

benefits thanks to the unique features it offers.

The experience with interactive applications in CrossGrid [Bubak et al. , 2003],

workflow applications [Bubak et al. , 2005, Gubala et al. , 2006] and virtual lab-

oratories [Sloot et al. , 2006] gave us the opportunity to verify different ap-

proaches to constructing such applications. The component-based approach

was investigated in various aspects: MOCCA [Malawski et al. , 2005] is an im-

plementation of the CCA standard using the H2O platform which provides a

lightweight container for components. The GridSpace environment [Malawski et al. , 2008]

provides a high-level scripting approach for rapid exploratory programming and

it integrates multiple technologies, including services, components and batch

jobs [Malawski et al. , 2010]. We also conducted experiments with deployment

of component applications on grid infrastructures [Malawski et al. , 2006b] and

applicability of P2P overlay networks for providing communication in the en-

vironment [Jurczyk et al. , 2006]. Recent experiments with Amazon EC2 com-

pute cloud indicate that the proposed component-based approach fits the cloud

computing model as well.

The main contribution of this paper is to present the complete overview of

carefully designed methods and tools which, combined together, support the

component-based approach of e-Science applications development. Intercon-



nected, they constitute a complete and self-sufficient programming and exe-

cution environment for scientific applications. We discuss the advantages and

disadvantages of the component-based approach based on our experience and

the lessons learned.

The paper is organized as follows: after the analysis of the state of the art

(Section 2) we underline the advantages of using a component programming

model and the rationale of choosing CCA and H2O as base technologies (Sec-

tion 3). Next, we discuss in detail how all the requirements are met by the

methods and tools we develop. In Section 4 we present case studies with model

scientific applications as well as results of the benchmarks demonstrating the

correctness of the approach taken. Finally, in Section 5 we give the conclusions

and future work.

2 State of the art

The programming models which can be used to map computations performed

by a program onto the distributed nodes of the grid come from parallel and

distributed computing, and include task processing (e.g. PBS, Globus Toolkit),

message passing (MPICH, OpenMPI), distributed objects (including active ob-

jects as in ProActive [Baduel et al. , 2006]), tuple spaces including JavaSpaces

or HLA, and component- or service-oriented models. Task processing models

require to use many low-level techniques such as scripting and system tools to

build and run their applications. For message passing, the lack of support for

application deployment in the programming model and no mechanisms for high-

level composition remain drawbacks of MPI. The main drawback of distributed

object systems such as CORBA is the tight coupling between objects in terms of

dependencies, which becomes an obstacle for adaptability and flexibility of ap-

plications. On the other hand, a component and service-oriented models provide



better support for third-party composition and reconfiguration of applications.

On a high level, a programming model defines how the whole application can

be composed from basic blocks to provide the functionality required by the users.

One deals with composition in space when there are many application units

running (possibly in parallel) and they need to interact with one another using

direct links. In component-based systems, there are several techniques of compo-

sition: low-level API as in CCA [Armstrong et al. , 2006], scripting languages,

descriptor-based programming (ADL as in Fractal [Bruneton et al. , 2006]), skele-

tons and high-order components, and graphical tools. Popular MapReduce

model [Dean & Ghemawat, 2008] also belongs to this class. Composition in

time takes place when there are several tasks (or service operations) which have

to be executed in the order of their temporal dependencies. Usually, there is

a need for some external execution (workflow) engine which triggers activities

and controls the order of execution. Many workflow systems are available for

grids, including Kepler, Triana, Pegasus and K-WfGrid [Gubala et al. , 2006]

systems. On the other hand, the scripting languages [Ousterhout, 1998] are

useful for that purpose, since they provide constructs such as pipes and loops

which allow expressing the complex control flow of the program.

In addition to composition in space and composition in time we should men-

tion parallel and structured component composition. One approach is investi-

gated in the CCA [Armstrong et al. , 2006] model, taking into account such is-

sues as data redistribution for MxN component connections [Bertrand et al. , 2005].

Parallel extensions to component models are introduced to Corba Component

Model (CCM) [Perez et al. , 2003]. Another type can be useful for more dis-

tributed and loosely-coupled scenarios, and appears as component collections,

as in XCAT framework [Govindaraju et al. , 2003] or ProActive implementa-

tion of the Fractal component model [Baduel et al. , 2006] with Grid Com-



ponent Model (GCM) [Baude et al. , 2009] extensions, including collective in-

terfaces [Baude et al. , 2007]. The skeleton approach can be used as in AS-

SIST [Aldinucci et al. , 2005] and HOC-SA [Duennweber & Gorlatch, 2004]. The

choice of the underlying programming model can restrict the high-level compo-

sition types available for applications. For instance, the component model can

support all composition types, whereas e.g. pure service-oriented models do

not allow (or not directly support) composition in space. The examples of

XCAT [Govindaraju et al. , 2003] and ICENI [Mayer et al. , 2003] frameworks

suggest that it is possible to combine both composition types in a single high-

level model. Perez [Bouziane et al. , 2008] suggests a graph-based notation

which does not necessarily imply a simple solution. It is noteworthy that com-

position can be also applied to Web services, as it is in the Service Component

Architecture (SCA) [Barber, 2007].

The next challenging question can be stated as follows: How access to com-

puting resources can be obtained?. In Globus and Unicore, virtualization is

applied on the job processing level, whereas in Legion it reaches the higher

software object level. In the case of service-oriented architectures, access to

computation can be reduced to accessing a specific service. Due to this highest

level of virtualization, Web service technologies can provide seamless access to

computing resources, however they do not solve deployment problems. As an

alternative, there is H2O [Kurzyniec et al. , 2003], a lightweight resource shar-

ing platform. In H2O, resource providers only need to install an H2O kernel

which serves as a basic container for deploying components, called pluglets, thus

in H2O virtualization is applied at the container (kernel) level.

The e-science applications are often custom-developed and can evolve dur-

ing their development and the lifecycle of the scientific experiment thus the

process of application deployment becomes a challenge. Grid middleware, such



as Globus Toolkit, provide the low-level means of application installation on

the execution host by the mechanism of staging. Another technology enabling

application deployment is virtualization [Sotomayor et al. , 2008]. A similar

approach is offered by the cloud computing initiatives and the Infrastructure-

as-a-Service model. Solutions such as the Amazon Elastic Compute Cloud

(EC2) [Amazon.com, 2008] allow deploying and running virtual machine im-

ages on a configurable infrastructure. These solutions demonstrate that the

need for software deployment and resource provisioning is important. The Web

services model, while providing good mechanisms for accessing remote services in

a loosely-coupled way, does not define any standard mechanisms for service de-

ployment. Component technologies include the deployment process directly into

the programming model and in the standards [Object Management Group, Inc., 2006,

Baude et al. , 2009], since a component by definition is the basic unit of deploy-

ment. The H2O platform, on the other hand, provides a lightweight deployment

mechanism. It uses Java dynamic classloading features which allow deploying

and launching any Java classes published remotely (and possibly packaged as

JAR files) on HTTP or FTP servers.

The job processing model, although widely supported in grids, does not offer

composition in space and communication between jobs other than via inter-job

dependencies. MPI model does not provide high-level composition mechanisms

due to rather static application model. Distributed objects lack deployment

and composition support in the model, so these important features need to be

externally provided. The component model compares favourably to others, since

it supports composition and deployment directly in the model.



3 Basic methods and tools

Having selected the component model in general, there is a need to focus on a

concrete model and choose a base platform for constructing the environment.

In this research the CCA as a component model and the H2O platform as

a technology were selected. This decision introduces several benefits, some of

which are immediate and result from the features of CCA and H2O, and some of

which have to be elaborated upon and result in the ligher layers of the proposed

environment.

The concept of the environment can be presented as a layered architec-

ture, outlined in Fig. 1. On top, there is the scientific application which can

be built using any of the lower layers. Below, there is a high-level compo-

sition layer, comprising two composition modes: GScript for the scripting ap-

proach [Malawski et al. , 2008] and the descriptor-based MOCCAccino [Malawski et al. , 2006a]

system for composition based on the architecture description language. As dis-

cussed in Section 2, these modes are alternative approaches, so they can be

used depending on the preferences of the developer and on the application type.

The GScript approach is better suited for rapid development, experiments and

steering, while MOCCAccino should be used for structured applications which

require automated management.

The above mentioned layers are built on top of base component frameworks.

MOCCA [Malawski et al. , 2005] is a component framework implementing the

CCA model with the use of the H2O platform. MOCCA can be extended with

support for the Babel system, providing programming language interoperabil-

ity. Below this layer, there are basic middleware technologies which include

H2O as a resource sharing platform and execution environment, infrastructure

monitoring providing system status information and techniques for deployment

and management of the pool of resources. The lowest layer is the grid and cloud



Figure 1: The layered architecture of the environment, from top: applications,
high-level composition layer, parallel and interoperability extensions, base com-
ponent frameworks, middleware technologies and low-level grid or cloud infras-
tructure.

infrastructure which may include many different middleware types, as the role

of higher layers is to hide them from the component model and the application

itself.

3.1 Facilitating high-level programming

The chosen programming model should allow composing the application by third

parties from smaller blocks (modules) and express both temporal dependencies

between them, as well as direct connections. Combination of composition in time

and in space is a crucial feature of the model, since both types of interactions are

present in e-science applications. Additional benefits of the component model

are of a more generic software engineering nature: it facilitates code reuse,

dependency management and other good practices which are often neglected in



scientific programs.

In particular, CCA specifies an API for creating components and connect-

ing their ports which can be used to provide a low-level composition in space

mechanism, by using the Java API or Python and Ruby scripting. On top of

it, in order to program on a high level of abstraction and to hide the details

of the underlying computing infrastructure, a high-level scripting layer and an

Architecture Description Language-based layer is built. The support for both

models is shown in Fig. 2.

A high-level scripting layer is provided to enable application construction

using an imperative language. By using a user-friendly API implemented in

an object-oriented Ruby script, it is possible to compose the application on a

high level of abstraction, while the underlying runtime system will be respon-

sible for automatic component placement. Additionally, the same Ruby script

(referred here as GScript) is used to invoke operations on the created com-

ponents, using control structures (loops, conditions, iterators, etc.), hence the

combined capabilities of both composition in time and composition in

space can be expressed. The high-level scripting approach is realized as part of

the GridSpace programming environment, where the GridSpace engine is the

core of the runtime system and GRR registry stores the information of available

components.

As an alternative approach, we offer an option to specify the application

using a declarative language, namely an ADL. It enables hierarchical compo-

sition of component groups, where the actual number of components can be

parametrized and dynamically managed. Such ADL-based composition is re-

alized in the MOCCAccino system which uses HDNS [Gorissen et al. , 2005]

registry for locating H2O kernels.



Figure 2: E-Science application composition with GridSpace and MOCCAccino
as complementary scripting- and descriptor-based approaches

3.2 Deployment on shared resources

The environment should support deployment of custom application code on the

available resource pool, taking into account the heterogeneity of the infrastruc-

ture and middleware. The deployment should be dynamic, allowing adaptive

application behavior, namely by capabilities of deployment, undeployment and

redeployment of code at runtime.

In component model, the concept of a component container and the deploy-

ment process are reflected directly. Moreover, the container provides an abstrac-

tion layer which can be used to virtualize the heterogeneous resources available,

making it easier to abstract the underlying resources for the application. The

selection of H2O as the component container solves the basic deployment prob-

lems, since the H2O kernel is a full-fledged application server with remote and

dynamic deployment capabilities.

By selecting a component model, the problem of application deployment



can be reduced to the problem of deployment of components into a container.

Therefore, assuming that a pool of H2O kernels is available, the underlying grid

infrastructure is virtualized as a pool of component containers. Using cloud

terminology, the virtualization layer of H2O and MOCCA can be considered as

a Platform-as-a-Service (PaaS) layer positioned above the Infrastructure-as-a-

Service stack.

Unfortunately, in current production infrastructures such as EGEE/EGI, it

cannot be assumed that a pool of containers is automatically available, so there

is a need for a mechanism to deploy the kernels using the available grid mid-

dleware prior to actual component deployment. This approach can be seen as

dynamic virtualization using a pool of transient H2O kernels created on demand

and it is described in detail in [Malawski et al. , 2006b]. The idea is to use the

concept of pilot jobs known from e.g. Condor [Thain et al. , 2005] to spawn the

required number of H2O kernels as grid jobs using available middleware. Ad-

ditionally, to support communication between components running in private

networks of multiple clusters, it is possible to use JXTA P2P overlay network

which was integrated with our system [Jurczyk et al. , 2006]. This solves the

problem of connecting machines which cannot communicate directly because of

NAT or firewall restrictions, which is often the case.

The same mechanism of dynamic provisioning of component containers is

even simpler when using the cloud platform, such as Amazon EC2. We have

prepared the Amazon Machine Image (AMI) with a H2O kernel installed and

preconfigured to automatically start on system boot time and to listen on the

public interface. Using a simple API it is thus possible to dynamically on-

demand add component containers to the resource pool. It is noteworthy that

adding the support for EC2 was a straightforward task, which confirms that the

component-based approach fits well with the cloud infrastructure.



Figure 3: Deployment of component containers (H2O kernels) as pilot jobs on
grid nodes or as virtual machines on the cloud. Once the pool of containers is
available, the underlying infrastructure is hidden to the component framework.

The above described deployment process on grids and clouds is schematically

depicted in Fig. 3. First, the user creates a pool of H2O kernels using the API

for grid or cloud infrastructure. Once the kernels are running, the component

application can be deployed into the kernels using standard CCA API or tools.

One observation is noteworthy with respect to the resource sharing model.

Since our solution is based on H2O lightweight platform, it is possible to use

resources either directly accessible via H2O, or harness additional resources

from grid or cloud infrastructures by deploying H2O on top of them. This

approach isolates the component application from the low-level mechanism of

resource provision and for that reason it was possible to add support for new

infrastructures, such as Amazon EC2 without a significant effort. This means

that by creating a virtualization layer of component containers it is possible to

hide the differences between grid and cloud from the application perspective.

3.3 Scalability to diverse environments

Scientific applications often involve various computation models simulated with

specific, optimized environments. To support this requirement the proposed

framework should be scalable to run on machines ranging from single PCs or



laptops, through High Performance Computing (HPC) clusters to multiple grid

and cloud sites. In other words, the environment should guarantee that the un-

derlying infrastructure does not determine the programming model. The con-

cept of a lightweight container and the mechanism of component composition

allow creating applications in a dynamic, pluggable way, thus fitting heteroge-

neous environments.

In order to achieve the goal of scalability to diverse computing bases, the

environment should be based on two principles: lightweight platform and mecha-

nisms of pluggable and reconfigurable extensions. H2O can serve as a lightweight

platform, since it only requires a Java 1.4 or newer virtual machine (which pro-

vides portability), runs out-of-the-box from a 20MB packaged installation, takes

ca. 1 sec. to start up on a 2GHz PC and leaves a small memory footprint (ap-

proximately 25MB). This makes H2O easy to run on a developer’s laptop as well

as on a cluster, and easy to deploy on such infrastructures as EGI or Amazon

EC2. Regarding reconfigurability, H2O provides hot deployment capabilities,

while the CCA model allows for dynamic reconfiguration of component bind-

ings at runtime. Moreover, it is possible to create new component ports at

runtime, what may be useful for handling more dynamic scenarios.

3.4 Communication and levels of coupling

As the communication layer of the grid may be very heterogeneous, comprising

peer-to-peer networks, WANs, LANs, inter-cluster connections, and even direct

binding in a single process, the communication layer of the environment should

be able to adjust the connections between the application modules to these

physical constraints. The communication layer should also support collective or

parallel connections between application modules.

In component model, by following the separation-of-concerns paradigm, the



communication mechanism is provided by the environment, not by components

themselves, thus allowing the same components to operate in both local and

distributed configurations, while the protocol layer is managed by the frame-

work. The component models also allow for parallel or group connections and

communications.

H2O offers a multiprotocol communication library called RMIX for remote

invocations. Therefore, it can be directly used by components in the following

way: components inside a given container can use direct bindings, those located

in the same LAN or cluster can use a fast binary protocol, whereas for commu-

nication over the Internet, it will be possible to switch on encryption or use the

SOAP protocol wherever interoperability is required.

As applications are often parallel, there is a need to introduce some exten-

sions to the model to support parallel connections between components. This

is realized by a MultiBuilder extension [Malawski et al. , 2006b]. The parallel

connections between component groups are handled by the MOCCAccino ADL

and manager system.

3.5 Adaptability to grid and cloud environments

As e-Science applications tend to use large-scale computation components, the

use of vast, powerful computing environments of the grid is a natural require-

ment. However, such environments may be highly dynamic and undependable,

it will be crucial for the environment to provide some means of adaptability and

fault tolerance. For this purpose, it should support such monitoring capabilities

and adaptive features as dynamic and interactive reconfiguration of connections,

locations and bindings, as well as provide support for migration and checkpoint-

ing. The component model assumes the possibility of dynamic and interactive

reconfiguration of component applications, which makes it especially attractive



for long-running computations within a changing environment. By restricting

the application to the constraints of a component model, it is also easier to

support such features as application migration and checkpointing.

There are several ways to develop a system capable of adapting to such

a dynamic environment as the grid. Dynamic and interactive reconfiguration

of connections, locations and bindings is directly supported by the underly-

ing component model (CCA) and by the base platform (H2O). Some of the

automatic adaptive management capabilities are reflected in the design of the

MOCCAccino manager system, where it is possible to specify how a system

(application) should behave when new containers are added (or removed) from

the resource pool. These are handled by specific annotations in the ADL and by

the adaptive behavior of the application manager. In order to be self-adaptive,

a system requires some monitoring capabilities. Our concept assumes two types

of monitoring: infrastructure-centric and application-centric.

3.6 Interoperability

The goal of the proposed concept is interoperability with Web services as a

standard for programming distributed systems, and with the Grid Component

Model which is an alternative component model supported by the CoreGRID

network of excellence. By selecting H2O with RMIX which supports SOAP as

one of the protocols, interoperability with Web services is in principle possi-

ble. However, the fact that RMIX does not support WSDL becomes an issue.

Therefore we consider using additional Web services layer on top of H2O, so that

the provided component ports can be exported as Web services using a modern

embedded framework, such as XFire or Apache Axis/CXF. Since CCA is not

the only one component model, and CCM and GCM are also being developed,

it becomes important for the presented environment to allow components from



one framework to be instantiated in a container provided by another framework

and to allow inter-framework interoperability. We developed solution based on

the adapter concept which enables both types of interoperability between CCA

and GCM [Malawski et al. , 2007].

3.7 Security

Security is an important requirement for a system which allows deploying and

running custom application code on remote and shared resources, including

proper authentication, authorization and transport security. For large-scale

systems with multiple computing nodes in multiple administrative domains,

additional requirements are for Single Sign-On (SSO) and credential delegation,

i.e. allowing a process running on a remote node to access resources on another

one on behalf of a user.

The component model helps achieve separation of concerns by introduc-

ing the concept of a container. The security aspects such as authentication,

authorization and transport security can be managed and configured by the

framework. The container can provide sandboxing to protect the code running

on shared computing resources from interfering with the others.

H2O kernel is a component container which provides pluggable authentica-

tion modules and flexible authorization policies. Transport security is assured

by RMIX communication library which supports SSL, while the sandboxing is

provided by H2O kernel using Java security features.

The first extension which we introduced into the environment was the in-

tegration of H2O with Grid Security Infrastructure (GSI) [Foster et al. , 1998].

This solution uses X.509 certificates with proxy extensions, which provide SSO

and credential delegation, as well as compatibility with most production grid

infrastructures such as EGI. As a result, the access to MOCCA framework can



be granted only to such clients who can provide a valid proxy certificate of

registered users [Dyrda et al. , 2009].

Shibboleth [Internet 2 Consortium, n.d.] is a federated Web Single Sign-On

framework based on SAML (Security Assertion Markup Language). The SSO

is achieved by letting users to use their home organization logins and passwords

to access remote resources. Shibboleth features attribute-based access control

and by mutual agreements between participating institutions it allows decentral-

ized building of virtual organizations. We implemented the Shibboleth-based

authenticator to the H2O kernel, in which a Shibboleth handle is used as a cre-

dential and an external policy decision point (PDP) is used for authorization.

The advantage of Shibboleth over GSI is that the users are not required to have

their certificates, but the problem is a lack of proper management of security

handles for long-running computations. The Shibboleth authenticator enabled

to integrate MOCCA with the virtual organization infrastructure which controls

the access to the ViroLab virtual laboratory [Meizner et al. , 2009].

4 Case studies and experiments

In this section we present the results of the experiments which demonstrate

the applicability of the component approach for the sample applications. The

first experiment presents the usage of the scripting approach on the example of

data mining application. The second experiment involves an application which

simulates the formation of gold clusters using simulated annealing method. Fi-

naly, we show the results of the synthetic benchmark prepared to measure the

overhead of the component framework.



4.1 Weka experiments in ViroLab

The ViroLab virtual laboratory [Bubak et al. , 2008] is a system for collabo-

rative construction and execution of experiments in computational science. It

is focused on, but not limited to, infectious diseases caused by such viruses as

HIV.

MOCCA is one of the supported middleware technologies, and the GridSpace

scripting engine, as described in Section 3.1, is used as a core system for applica-

tion execution. The system was applied to constructing and executing real-life

examples. Below, we show how the components can be used to perform a data

mining experiment using the Weka [Witten & Frank, 2005] library wrapped in

components.

Key functionality elements of Weka, such as classifiers, association rules,

clustering algorithms and filters, were wrapped as components to allow for more

flexible creation of various experiments. To provide better performance in terms

of transferring and storing datasets, it was decided to use the HTTP protocol

and a WebDAV server. The components can now retrieve the datasets from

any remote URL and store the results on a WebDAV server, which makes them,

again, available via URL. Such pass-by-reference approach is very convenient,

since the whole (potentially large) dataset does not have to be directly passed

through the GridSpace engine.

Fig. 4 presents the scenario of an experiment which can be used to compare

the performance of several classifiers from Weka on a sample dataset. It is im-

plemented as a script shown in Fig. 5. The script demonstrates how to create an

instance of a classifier component, supply it with a specific algorithm and per-

form the classification, measuring the time and accuracy of the predictions. The

scripting approach allows easy creation of complex experiments using constructs

such as loops, thus providing effective and flexible experiment steering.



Split
dataset

Train
Classifier

Test
Classifier

Assign
Classifier
Type

Compare
results

Loop

Dataset URL

Training
dataset

Testing
dataset

Predicted
dataset

Control flow

Data flow

Figure 4: The data and control flow for the sample script demonstrating the
use of the Weka Data Mining application which uses MOCCA components.

The experiment described above, albeit simple, demonstrates several benefits

of the component-based approach. First, the Classifier component is a stateful

entity, which is created (deployed) on demand and can use the available resources

(H2O kernels). An instance of the classifier is created for each experiment run.

It can also be used in collaborative scenarios, when a classifier is trained by one

experiment (user) and then published for use by other experiments (users).

4.2 Application: Gold cluster formation

The formation of clusters of gold atoms is an important process in nanotech-

nology [Wilson & Johnston, 2000]. The goal is is to apply simulated annealing

method to minimize the energy of the molecules, given the molecule size and

the potential. The application is compute intensive, and it requires not only

minimization of the energy, but it involves a larger loop, in which the actual

minimization method is optimized by tuning parameters such as cooling func-

tion or initial configurations. The component-based application for simulating

formation of gold clusters has evolved over time. Below, we describe a version

where the energy minimization is additionally subject of an automatic tuning

of the application parameters (see Fig. 6).



Classifiers = [
’weka.classifiers.rules.Prism’,

’weka.classifiers.functions.Logistic’,,
’weka.classifiers.trees.J48’,
’weka.classifiers.lazy.KStar’

]

wekaURLgem = GObj.create(
’cyfronet.gridspace.gem.weka.WekaURLGem’)

classifier = GObj.create(
’cyfronet.gridspace.gem.weka.WekaClassifier’)

dataURL = ’primary-tumor’ #address in WebDav

splitDataName = ’split-primary-tumor’
splitURLData = wekaURLgem.splitURLData(dataURL, ’’, splitDataName, ’’, 50)

i = 0
10.times do

classifier.assignClassifier(Classifiers[i])
learning_time = classifier.trainURLdata(

splitURLData.trainingURLdata, ’’, ’class’)

classifiedData = classifier.classifyURLdata(

splitURLData.testingURLdata, ’’, ’’, ’’)

classificationPercetnage =
wekaURLgem.compareURLData(splitURLData.testingURLdata,

’’, classifiedData,’’, ’class’)

result = classificationPercetnage.to_f * 100.to_f

wekaURLgem.deleteURLdata(classifiedData)

i = i + 1
end

Figure 5: Data mining application script. GObj.create() deploys the compo-
nent which can be subsequently used by invoking operations directly from the
script.

The Starter component is responsible for coordinating the work of other

components. Configuration Generator creates the initial random configurations

of atoms which are then consumed by multiple Simulated Annealing compo-

nents, performing the actual minimization process. The Configuration Genera-

tor and Simulated Annealing components may be used for both sequential and

distributed configurations, since they do not have multiple ports. The Store-

room component is responsible for storing all achieved configurations and may

be used to derive results statistics. A single Molecule port is devoted to ex-

changing data between components. The Storeroom component is designed to



Figure 6: Configuration of gold cluster application which enables tuning its
parameters in order to optimize the energy minimization process.

support a single Molecule provider, Gather component handles multiple con-

nected components and passes their results to the Storeroom. This enables

building a hierarchical tree of gather components, which may be required when

deploying the application on a large number of nodes.

The Simulated Annealing components were extended to use the externally

provided Annealing Function which represents the strategy of cooling the sys-

tem and influences the optimization process. Such a function can be provided

by a specialized Annealing Function Manager component which gathers statis-

tics about the optimization process from the Simulated Annealing components

in order to improve the cooling function. Additionally, the Local Minimiza-

tion component is connected to the Storeroom to improve the results using the

L-BFGS method (using the JAT [NASA, 2002] library). For interactive visual-

ization, a prototype version of the Output Generator component was developed,



using the Jmol [Herraez, 2010] visualization library (not shown in the diagram).

The Molecule and Statistics ports, together with their corresponding Gather

components, have similar functionality. To facilitate development, a common

abstract port class called buffered port was introduced which helps manage the

queue of data items to be processed. The gather functionality has been ab-

stracted so that it can be reused in other applications.

By following a similar approach as described in [Malawski et al. , 2006b],

it was possible to deploy the simulated annealing application on the French

Grid’5000 testbed. The application was successfully deployed on three clusters

located at Sophia-Antipolis, Bordeaux and Orsay and the computing times and

throughput for the molecules of 20 atoms were measured. Fig. 7 presents results

of one of the experiments, showing the throughput in molecules per minute

versus the number of cores used. Although the results indicate that it is possible

to achieve a good speedup with our framework, the main advantage of the

component approach is the flexibility of application composition and facilitated

adaptation to new environments, such as Grid’5000.

4.3 Scalability experiments on Grid’5000

The purpose of the following experiments which were run on the French Grid’5000,

was to test and analyze the scalability of the MOCCA environment on a large

number of nodes. A benchmark application was constructed to allow extracting

important system metrics, such as time of deployment, connection, invocations

on collections of ports and cleanup of components.

The structure of the application is shown in Fig 8. The Starter compo-

nent is connected to the collection of Forwarder components which in turn are

connected to a single Echo component. The echo() operation on the port of

connected components consisted of passing and returning a several-byte string



Figure 7: Throughput of the gold cluster application run on 3 clusters of
Grid’5000 (Sophia, Orsay, Bordeaux)

message. The components were created using the MultiBuilder mechanism. The

goal of version 1 of the benchmark was to measure execution times where all

the stages were performed sequentially, so no parallelism was exploited.

First, the application was run on a pool of 114 H2O kernels running on 114

nodes of 6 clusters, totalling 258 cores and the number of Forwarder components

in the collection was equal to the number of cores. The total run time (from

client startup till the end of cleanup) versus the number of cores is shown in

Fig 9. It can be seen that the growth of computing time is linear with respect

to the number of components (cores). This can be explained by the fact that all

operations (deployment, connection, invocation and destroying) were invoked

sequentially. The average processing time per component was 2 seconds, which

is comparable to the time of running the above application on a single node. The

conclusion is that creation of a large number of connections between components

using the MultiBuilder mechanism does not introduce additional overhead. This



Figure 8: Configuration of components in the benchmark application. The
number of Forwarder components in the collection is parametrized.

means that the environment preserves scalability when handling collections of

components sequentially.

The goal of the second experiment was to measure the time of each stage

of the benchmark application. The results of the two sample runs are shown

in Tab. 4.3. As can be seen, the most time-consuming stages are the creation

of components and the actual computing which is the time of passing the echo

message from Starter through Forwarders to Echo and back again. The creation

time is relatively long, since it involves opening new sessions to H2O kernels and

instantiating a new component, including classloading. The reason behind the

lengthy computation time stems from the implementation of CCA connect()

and getPort() methods in MOCCA. When components are connected, the

uses side only receives a reference to the provides side. The actual opening of a

session to the H2O kernel of the provider is performed when the user component

requests a reference to the uses port from the framework, which is done during



Figure 9: Total execution time of the benchmark application (version 1) on 258
cores, 6 clusters

n creation connection computing destroy total

260 207 25 219 99 551
240 90 20 171 103 384

Table 1: Detailed measurements of application stages (version 1) for sample
runs. Number of computing nodes (cores) is denoted by n and the time is given
in seconds.

application execution (compute time). In the case of the benchmark application,

there are two such operations per each Forwarder, which explains the delay and

overall time.

The goal of the version 2 of the benchmark was to measure the perfor-

mance of parallel invocation of operations on the collection of components. The

implementation of concurrent invocation in the Starter component is based on

the cached thread pool executor mechanism from the java.util.concurrent

package. The opening of sessions and execution of forwarders can then proceed

in parallel. The results of detailed measurements of version 2 of the bench-

mark performed on 100 cores distributed over 6 clusters are shown in Fig. 10.



Figure 10: Detailed execution times of the benchmark application (version 2)
on 100 cores of 6 clusters

This time, the computation time is reduced to approximately 5% of total run

time, while for the sequential version it was nearly 50%. As expected, the asyn-

chronous execution considerably improves the application performance, but still

we can observe overhead induced by the initial opening of the connections.

In order to distinguish the opening of the H2O session from the actual re-

mote method invocation on component ports, the Starter component was further

modified to perform a series of invocations of the echo operation after obtaining

a reference to the port (version 3). The time of the first invocation (labelled

computing1) was measured separately from the average time of the 10 subse-

quent invocations (labelled computing). The results are presented in Fig. 11(a)

with the computing time (enlarged scale) shown in Fig. 11(b). It can be seen

that the computation time for 10 components (cores) is 0.2 seconds and for 100

it grows to nearly 1 s. The average network latency between clusters measured

using the ping command was 0.017 s and the measured invocation time in-

volves 4 such network hops. By comparing these values it can be seen that the

component framework does not introduce significant overhead. It was observed



(a) Execution times of the stages of the bench-
mark application

(b) Average execution time of the computing
stage (enlarged)

Figure 11: Detailed measurements of the benchmark application (version 3) on
100 cores of 4 clusters

that the invocation (computation) time grows with the number of nodes, which

must be caused by the combined effects of the sequential nature of initiating

asynchronous invocations, the single network connection from Starter and to

Echo, as well as a single 2-CPU node these two components were deployed on.

The invocation time can be potentially further optimized by using an efficient

broadcast algorithm, which was, however, not the goal of this work.

In addition to the above described benchmarks it was possible to deploy and

run the test application on 600 and 800 cores of 8 clusters respectively. The

results shown in Tab. 2 are in agreement with the relation observed in previous

tests, although more systematic experiments would be required to confirm this

behavior for large-scale deployments on more than 1000 processor cores.

n creation connection computing destroy total

800 415 80 66 287 849
600 222 49 46 202 518

Table 2: The duration of subsequent stages of application deployment on up to
800 cores of 8 clusters. The number of cores is denoted as n and the execution
time is given in seconds.



The results of the large-scale deployment experiments are very promising.

First, it was possible to successfully deploy, execute and clean up the benchmark

application on up to 800 processor cores of 8 clusters of the Grid’5000 testbed.

The times of various steps of the application lifecycle were measured and the

observed behavior was explained.

Finally, we can conclude that the component-based approach does not in-

troduce significant overhead and the environment retains scalability even for

large-scale deployments which are typical for grids and clouds. These results

are consistent with those yielded by tests of other Java-based frameworks such

as ProActive or Satin [van Nieuwpoort et al. , 2006].

5 Conclusions and future work

The main conclusion is that choosing a component model and a lightweight

resource sharing platform is an appropriate solution for scientific applications

on the grid and cloud infrastructures. The selection of CCA and H2O as sam-

ple technologies was motivated by pragmatic reasons, since both provide tools

which facilitate development and demonstration of the prototype programming

environment. Nevertheless, it is important to note that both the model and

the platform are general in scope and it is possible to use other technologies

than CCA and H2O. This was demonstrated in by offering high-level appli-

cation composition based on a scripting approach which is technology-neutral.

Moreover, the interoperability experience with GCM and ProActive shows that

it is possible to combine components from many models and frameworks into

one application, thus hiding the details of any specific component standard.

In CCA, interactions are limited to RPC-style invocations: a component

with a uses port can invoke methods on the connected provides port. This im-

plies a synchronous request-response model. However, some component models



support asynchronous interactions directly, either as an event system (as in

CCM) or as asynchronous RMI (as in GCM and its implementation in ProAc-

tive). Our experience shows that the simple RPC model of interactions is not

always sufficient or convenient for many classes of applications, hence work on

supporting new types of component ports remains important. Nevertheless, it

should be noted that this issue emerges on the level of the base component

model, while all higher-level tools for component composition proposed in this

paper remain valid and usable.

The concepts and methods devised in this paper are of a general nature

and can thus outlive specific technologies and the implementations. Experi-

ence gained from experiments on constructing applications from components

and providing higher-level tools and abstractions will be useful for both dis-

tributed computing technologies: grids and clouds. Moreover, the methods of

creating virtualization layers over heterogeneous resources will gain importance

as increasingly greater numbers of resource and device types become available

for solving computational problems, ranging from petascale supercomputers,

IaaS cloud providers, through gaming consoles such as PlayStation, to mobile

devices. Specifically, adding new cloud providers to the resource pool would

not change the way in which the application is constructed and deployed. This

conclusion is in agreement with the one stated in [Schwiegelshohn et al. , 2010]

that grid and cloud computing approaches can complement and benefit from

each other.

A list of future research directions which were identified includes systematic

development of supporting algorithms e.g. for deployment planning, higher-

level programming support using semantic Web concepts, development of a

more integrated environment to make it more usable, development of a formal

model which would enable reasoning about the properties of the environment



and the application etc, and better support for wrapping legacy applications

as components to enable the environment to be practically applicable in more

real-life applications.

6 Acknowledgments

The authors would like to express their gratitude to multiple collaborating col-

leagues from CoreGRID and ViroLab projects. Special thanks go to Daniel

Harezlak, Michal Placek, Tomasz Jadczyk and Michal Dyrda, Jan Meizner and

Piotr Nowakowski. This work was supported by UDA – POKL.04.01.01-00-

367/08-00 grant from AGH. Experiments presented in this paper were carried

out using the Grid’5000 experimental testbed, (see https://www.grid5000.

fr). The access to the Amazon EC2 cloud was supported by AWS in Education

grant.

7 Biographies

Maciej Malawski, Ph.D. in computer science and M.Sc. in computer science

and in physics. Researcher and lecturer at the Institute of Computer Science

AGH and at ACC Cyfronet AGH. Coauthor of over 50 international publications

including journal and conference papers, and book chapters. Involved in the EU

IST ViroLab project, where he was the leader responsible for the middleware

task and for contacts with external users. Responsible for Virtual Laboratory

developed in PL-Grid project. His scientific interests include parallel computing,

grid systems, distributed service- and component-based systems, and scientific

applications.

Marian Bubak, Ph.D., is an adjunct at the Institute of Computer Science

AGH, a staff member at the ACC Cyfronet AGH, and the Professor of Dis-



tributed System Engineering at the Informatics Institute of the Universiteit van

Amsterdam. His research interests include distributed and grid systems for

scientific simulations. He co-authored about 230 papers. He lead the architec-

ture team of the EU IST CrossGrid Project, he was the Scientific Coordinator

of K-WfGrid Project and the member of the Integration Monitoring Commit-

tee of CoreGRID. He served as a program committee member, chairman and

organiser of several international conferences (HPCN, Physics Computing, Eu-

roPVM/MPI, SupEur, HiPer, ICCS, HPCC, e-Science’2006); he is co-editor of

17 proceedings of international conferences.

Tomasz Guba la M.Sc. in Computer Science, worked for the Section Compu-

tational Science at the University of Amsterdam, the Netherlands as a scientific

programmer and computer science research assistant. He was involved in a ma-

jor EU-funded project ViroLab as a chief designer of the virtual laboratory for

infectious diseases. He is an external PhD student at the Section of Computa-

tional Science at the University of Amsterdam, he works at the ACC Cyfronet

in Krakow as a scientific programmer and also applies his research as a part-

time commercial solutions developer. His main scientific interests are seman-

tic modelling of application domains, semantic integration of tools, distributed

computing and services for eScience.

References

[Aldinucci et al. , 2005] Aldinucci, M., et al. . 2005. Components for High Per-

formance Grid Programming in Grid.IT. Pages 19–38 of: Getov, V., & Kiel-

mann, T. (eds), Proc. of the Workshop on Component Models and Systems

for Grid Applications, ICS ’04. CoreGRID. Springer.



[Amazon.com, 2008] Amazon.com. 2008. Elastic Compute Cloud (EC2). aws.

amazon.com/ec2.

[Armstrong et al. , 2006] Armstrong, Rob, et al. . 2006. The CCA component

model for high-performance scientific computing. Concurrency and Compu-

tation : Practice and Experience, 18(2), 215–229.

[Baduel et al. , 2006] Baduel, Laurent, et al. . 2006. Programming, Deploying,

Composing, for the Grid. In: Cunha, José C., & Rana, Omer F. (eds), Grid

Computing: Software Environments and Tools. Springer.

[Barber, 2007] Barber, Graham. 2007. Service Component Architecture Home.

http://osoa.org/display/Main/Service+Component+Architecture+

Home.

[Baude et al. , 2007] Baude, Françoise, Caromel, Denis, Henrio, Ludovic, &

Morel, Matthieu. 2007. Collective Interfaces for Distributed Components.

Pages 599–610 of: Seventh IEEE International Symposium on Cluster Com-

puting and the Grid (CCGrid 2007), 14-17 May 2007, Rio de Janeiro, Brazil.

IEEE Computer Society.

[Baude et al. , 2009] Baude, Françoise, Caromel, Denis, Dalmasso, Cédric,

Danelutto, Marco, Getov, Vladimir, Henrio, Ludovic, & Pérez, Christian.

2009. GCM: a grid extension to Fractal for autonomous distributed compo-

nents. Annales des Télécommunications, 64(1-2), 5–24.

[Bertrand et al. , 2005] Bertrand, Felipe, Bramley, Randall, Sussman, Alan,

Bernholdt, David E., Kohl, James Arthur, Larson, Jay W., & Damevski,

Kostadin. 2005. Data Redistribution and Remote Method Invocation in Paral-

lel Component Architectures. In: 19th International Parallel and Distributed

Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-8

April 2005, Denver, CA, USA. IEEE Computer Society.



[Bouziane et al. , 2008] Bouziane, Hinde-Lilia, Pérez, Christian, & Priol,

Thierry. 2008. A Software Component Model with Spatial and Temporal

Compositions for Grid Infrastructures. Pages 698–708 of: Luque, Emilio,

Margalef, Tomàs, & Benitez, Domingo (eds), Euro-Par 2008 - Parallel Pro-

cessing, 14th International Euro-Par Conference, Las Palmas de Gran Ca-

naria, Spain, August 26-29, 2008, Proceedings. Lecture Notes in Computer

Science, vol. 5168. Springer.

[Bruneton et al. , 2006] Bruneton, Eric, et al. . 2006. The FRACTAL com-

ponent model and its support in Java. Softw., Pract. Exper., 36(11-12),

1257–1284.

[Bubak et al. , 2003] Bubak, M., Malawski, M., & Zajac, K. 2003. Architecture

of the Grid for Interactive Applications. Pages 207–213 of: Sloot, P. M. A.,

& et al. (eds), ICCS 2003. LNCS, no. 2657. Springer.

[Bubak et al. , 2005] Bubak, M., Gubala, T., Kapalka, M., Malawski, M., &

Rycerz, K. 2005. Workflow Composer and Service Registry for Grid Applica-

tions. FGCS, 21(1), 79–86.

[Bubak et al. , 2008] Bubak, Marian, et al. . 2008. Virtual Laboratory for De-

velopment and Execution of Biomedical Collaborative Applications. Pages

373–378 of: Proceedings of the 21st IEEE CBMS, June 17-19, 2008,

Jyväskylä, Finland. IEEE Computer Society.

[Dean & Ghemawat, 2008] Dean, Jeffrey, & Ghemawat, Sanjay. 2008. MapRe-

duce: simplified data processing on large clusters. Commun. ACM, 51(1),

107–113.

[Deelman, 2010] Deelman, Ewa. 2010. Grids and Clouds: Making Workflow

Applications Work in Heterogeneous Distributed Environments. International

Journal of High Performance Computing Applications, 24(3), 284–298.



[Duennweber & Gorlatch, 2004] Duennweber, Jan, & Gorlatch, Sergei. 2004.

HOC-SA: A Grid Service Architecture for Higher-Order Components. Pages

288–294 of: Services Computing, 2004 IEEE Int. Conf. on (SCC’04). Shang-

hai, China: IEEE.

[Dyrda et al. , 2009] Dyrda, Michal, Malawski, Maciej, Bubak, Marian, &

Naqvi, Syed. 2009. Providing security for MOCCA component environ-

ment. Pages 1–7 of: 23rd IEEE International Symposium on Parallel and

Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009. IEEE.

[Foster & Kesselman, 2006] Foster, Ian, & Kesselman, Karl. 2006. Scaling

System-Level Science: Scientific Exploration and IT Implications. Computer,

39(11), 31–39.

[Foster et al. , 1998] Foster, Ian T., Kesselman, Carl, Tsudik, Gene, & Tuecke,

Steven. 1998. A Security Architecture for Computational Grids. Pages 83–92

of: ACM Conference on Computer and Communications Security.

[Gorissen et al. , 2005] Gorissen, Dirk, Wendykier, Piotr, Kurzyniec, Dawid,

& Sunderam, Vaidy. 2005 (Nov.). Integrating grid information services using

JNDI. In: 6th IEEE/ACM International Workshop on Grid Computing (Grid

2005).

[Govindaraju et al. , 2003] Govindaraju, Madhusudhan, et al. . 2003. Merg-

ing the CCA Component Model with the OGSI Framework. Page 182 of:

CCGRID ’03: Proceedings of the 3st International Symposium on Cluster

Computing and the Grid. Washington, DC, USA: IEEE Computer Society.

[Gubala et al. , 2006] Gubala, Tomasz, Herezlak, Daniel, Bubak, Marian, &

Malawski, Maciej. 2006. Semantic Composition of Scientific Workflows Based

on the Petri Nets Formalism. Page 12 of: e-Science’06 Proc. Amsterdam,

The Netherlands: IEEE Computer Society.



[Herraez, 2010] Herraez, Angel. 2010. Jmol: an open-source Java viewer for

chemical structures in 3D. http://www.jmol.org/.

[Internet 2 Consortium, n.d.] Internet 2 Consortium. Shibboleth system. http:

//shibboleth.internet2.edu/.

[Jurczyk et al. , 2006] Jurczyk, Pawel, et al. . 2006. Enabling Remote Method

Invocations in Peer-to-Peer Environments: RMIX over JXTA. Pages 667–674

of: Wyrzykowski, Roman, Dongarra, Jack, Meyer, Norbert, & Wasniewski,

Jerzy (eds), PPAM 2005. LNCS, vol. 3911. Springer.

[Kurzyniec et al. , 2003] Kurzyniec, D., et al. . 2003. Towards Self-Organizing

Distributed Computing Frameworks: The H2O Approach. Parallel Processing

Lett., 13(2), 273–290.

[Malawski et al. , 2005] Malawski, Maciej, Kurzyniec, Dawid, & Sunderam,

Vaidy. 2005. MOCCA – Towards a Distributed CCA Framework for Meta-

computing. In: IPDPS 2005. IEEE Computer Society.

[Malawski et al. , 2006a] Malawski, Maciej, Bartynski, Tomasz, Ciepiela, Eryk,

Kocot, Joanna, Pelczar, Przemyslaw, & Bubak, Marian. 2006a (December).

An ADL-based Support for CCA Components on the Grid. In: CoreGRID

Workshop on Grid Systems, Tools and Environments.

[Malawski et al. , 2006b] Malawski, Maciej, Bubak, Marian, Placek, Michal,

Kurzyniec, Dawid, & Sunderam, Vaidy. 2006b. Experiments with distributed

component computing across Grid boundaries. In: Proceedings of the HPC-

GECO/CompFrame workshop in conjunction with HPDC 2006.

[Malawski et al. , 2007] Malawski, Maciej, Bubak, Marian, Baude, Francoise,

Caromel, Denis, Henrio, Ludovic, & Morel, Matthieu. 2007. Interoperability



of grid component models: GCM and CCA case study. Pages 95–106 of:

CoreGRID Symposium. CoreGRID series. Springer.

[Malawski et al. , 2008] Malawski, Maciej, Gubala, Tomasz, Kasztelnik, Marek,

Bartynski, Tomasz, Bubak, Marian, Baude, Francoise, & Henrio, Ludovic.

2008. High-level Scripting Approach for Building Component-based Appli-

cations on the Grid. Pages 307–320 of: Danelutto, Marco, Fragopoulou,

Paraskevi, & Getov, Vladimir (eds), Making Grids Work: CoreGRID Work-

shop. Heraklion, Crete: Springer.

[Malawski et al. , 2010] Malawski, Maciej, Bartyński, Tomasz, & Bubak, Mar-

ian. 2010. Invocation of operations from script-based Grid applications. Fu-

ture Gener. Comput. Syst., 26(1), 138–146.

[Mayer et al. , 2003] Mayer, A., et al. . 2003 (Sept.). ICENI Dataflow and Work-

flow: Composition and Scheduling in Space and Time. Pages 627–634 of: UK

e-Science All Hands Meeting. ISBN 1-904425-11-9.

[Meizner et al. , 2009] Meizner, Jan, Malawski, Maciej, Ciepiela, Eryk, Kasztel-

nik, Marek, Harezlak, Daniel, Nowakowski, Piotr, Król, Dariusz, Gubala,

Tomasz, Funika, Wlodzimierz, Bubak, Marian, Mikolajczyk, Tomasz,

Plaszczak, Pawel, Wilk, Krzysztof, & Assel, Matthias. 2009. ViroLab Security

and Virtual Organization Infrastructure. Pages 230–245 of: Dou, Yong, Gru-

ber, Ralf, & Joller, Josef M. (eds), Advanced Parallel Processing Technologies,

8th International Symposium, APPT 2009, Rapperswil, Switzerland, August

24-25, 2009, Proceedings. Lecture Notes in Computer Science, vol. 5737.

Springer.

[NASA, 2002] NASA. 2002. Java Astrodynamics Toolkit (JAT). http://

opensource.gsfc.nasa.gov/projects/JAT/JAT.php.



[NGG Group, 2004] NGG Group. 2004 (July). Next Generation Grids 2 Re-

quirements and Options for European Grids Research 2005-2010 and Beyond.

Tech. rept.

[Object Management Group, Inc., 2006] Object Management Group, Inc. 2006

(Apr). Deployment and Configuration of Component-based Distributed Ap-

plications Specification, Version 4.0. http://www.omg.org/docs/formal/

06-04-02.pdf.

[Ousterhout, 1998] Ousterhout, John K. 1998. Scripting: Higher-Level Pro-

gramming for the 21st Century. Computer, 31(3), 23–30.

[Perez et al. , 2003] Perez, Christian, Priol, Thierry, & Ribes, Andre. 2003. A

Parallel CORBA Component Model for Numerical Code Coupling. The In-

ternational Journal of High Performance Computing Applications (IJHPCA),

17(4), 417–429. Special issue Best Applications Papers from the 3rd Intl.

Workshop on Grid Computing.

[Schwiegelshohn et al. , 2010] Schwiegelshohn, Uwe, Badia, Rosa M., Bubak,

Marian, Danelutto, Marco, Dustdar, Schahram, Gagliardi, Fabrizio, Geiger,

Alfred, Hluchy, Ladislav, Kranzlmller, Dieter, Laure, Erwin, Priol, Thierry,

Reinefeld, Alexander, Resch, Michael, Reuter, Andreas, Rienhoff, Otto, Rter,

Thomas, Sloot, Peter, Talia, Domenico, Ullmann, Klaus, Yahyapour, Ramin,

& von Voigt, Gabriele. 2010. Perspectives on grid computing. Future Gener-

ation Computer Systems, 26(8), 1104 – 1115.

[Sloot et al. , 2006] Sloot, Peter M.A., Tirado-Ramos, Alfredo, Altintas, Ilkay,

Bubak, Marian, & Boucher, Charles. 2006. From Molecule to Man: Decision

Support in Individualized E-Health. Computer, 39(11), 40–46.

[Sotomayor et al. , 2008] Sotomayor, Borja, Keahey, Kate, & Foster, Ian T.

2008. Combining batch execution and leasing using virtual machines.



Pages 87–96 of: Parashar, Manish, Schwan, Karsten, Weissman, Jon B.,

& Laforenza, Domenico (eds), HPDC. ACM.

[Thain et al. , 2005] Thain, Douglas, Tannenbaum, Todd, & Livny, Miron.

2005. Distributed computing in practice: the Condor experience. Concur-

rency - Practice and Experience, 17(2-4), 323–356.

[van Nieuwpoort et al. , 2006] van Nieuwpoort, Rob V., et al. . 2006. Adap-

tive Load Balancing for Divide-and-Conquer Grid Applications. Journal of

Supercomputing.

[Vecchiola et al. , 2009] Vecchiola, Christian, Pandey, Suraj, & Buyya, Rajku-

mar. 2009. High-Performance Cloud Computing: A View of Scientific Appli-

cations. Oct.

[Wilson & Johnston, 2000] Wilson, N.T., & Johnston, R.L. 2000. Modelling

gold clusters with an empirical many-body potential. Eur. Phys. J. D, 12,

161–169.

[Witten & Frank, 2005] Witten, Ian H., & Frank, Eibe. 2005. Data Mining:

Practical Machine Learning Tools and Techniques, Second Edition (Morgan

Kaufmann Series in Data Management Systems). Morgan Kaufmann.


