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In this paper we address the complexity of building and running modern scientific applications on
various Grid systems with heterogeneous middleware. As a solution we have proposed the Grid Operation
Invoker (GOI) which offers an object-oriented method invocation semantics for interacting with diverse
computational services. GOI forms the core of the ViroLab virtual laboratory and it is used to invoke
operations from within in-silico experiments described using a scripting notation. We describe the
details of GOI (including architecture, technology adapters and asynchronous invocations) focusing on
a mechanism which allows adding high-level support for batch job processing middleware, e.g. EGEE
LCG/gLite. As an example, we present the NAMD molecular dynamics program, deployed on EGEE
infrastructure. The main achievement is the creation of the Grid Object abstraction, which can be used
to represent and access such diverse technologies as Web Services, distributed components and job
processing systems. Such an application model, based on high-level scripting, is an interesting alternative
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1. Introduction

Modern researchers, mostly in natural and life sciences, solve
highly complex problems with so-called in-silico experiments.
These high-level applications require large computational power
and storage and may combine various software tools or software
deployed on heterogeneous distributed resources. Experiments
need to employ both legacy tools, usually run as jobs on Grid infras-
tructures, and software implemented and exposed to modern mid-
dleware technologies, such as Web Services or components. This,
however, implies a problem when interfacing a software that not
only relies on different middleware packages, but also on diverse
interaction models [1].

Grid infrastructures have been considered the most appropriate
platform for computational science for many years [2] and, con-
sequently, many European projects providing such production in-
frastructures have been created, including EGEE [3] and DEISA [4].
Their main goal is to provide production infrastructure for high-
throughput and high-performance computing respectively. In
addition, there are also other initiatives, which focus on various
middleware frameworks, often based on service-oriented archi-
tectures or component models. Their aim is to provide computa-
tional resources virtualized at a higher level, e.g. in the form of
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Web Services. The service-oriented approach offers access to soft-
ware using well-defined interfaces (the Web Services from the
European Bioinformatics Institute [5] are a good example), while
production infrastructures provide relatively low-level interfaces
to computing resources, often limited to simple batch job submis-
sion. Building applications that use these infrastructures remains a
challenging task, due to the heterogeneity of Grid middleware and
different programming models. Therefore, the research concerning
tools for the development of such programs is of great importance.

Such a challenge is faced by virtual laboratory, which is a set of
tools that form a collaborative and distributed space for in-silico
experiments. This environment supports scientists in developing,
sharing and executing experiments. An example of a virtual labo-
ratory is a platform being developed in the scope of the ViroLab [6]
project. Experiments in this virtual laboratory are high-level ap-
plications which orchestrate many computational tasks running
on the Grid. The notation used for specifying experiment plans
uses the Ruby scripting language [7]. This approach allows spec-
ifying arbitrary complex experiments in a modern object-oriented
dynamic language, thus giving the programmer full control and
flexibility in the area of experiment design. Scripts, written in a
full-fledged programming language, can define experiment logic
using a rich set of control structures and also perform some com-
putations locally. Scripts are particularly convenient when there is
a need to combine high-level control structures of an application
with some glue code necessary to, e.g. convert output of one service
to the format required by another one, or to perform some simple
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local processing which does not have to be delegated to an external
service. Our experience with the virtual laboratory indicates [8,9]
that such an approach is an interesting and convenient alternative
to many existing scientific workflow systems which use graphical
notation [10-12].

The main research problem which we focus on in this paper
is how to access the underlying Grid resources from such high-
level applications. Solving this requires development of proper ab-
stractions, which can remain simple and intuitive to use as well
as covering a wide range of middleware types: service-oriented,
component-based or using job processing model. As a result of
our investigations, a dedicated module of the virtual laboratory,
called the Grid Operation Invoker (GOI) [13], has been developed.
It applies an object-oriented model with remote procedure call se-
mantics to dispatch computation in a uniform manner using di-
verse middleware technologies. During the first development stage
we provided support for Web Services and MOCCA [14] compo-
nent technologies. MOCCA is a CCA-compliant [15] framework for
building and running applications on the Grid. Advantages of the
component-based approach include the possibility of deployment
of custom-developed software modules on the available infras-
tructures, as well as more flexible constructing of applications by
connection component ports. To allow users to interact with vari-
ous middleware systems, GOl introduces multiple levels of abstrac-
tions, called Grid Objects.

In this paper we describe in detail the structure of the Grid
Operation Invoker and how it supports middleware technologies
which are based on the job processing model implemented in EGEE
and DEISA Grid infrastructures. Such projects provide scientists
with computational power, storage and a wide range of scientific
applications; yet it should be noted that their resources are
accessed with tools dedicated for one specific middleware package,
which enables submitting jobs or sequences of jobs. In the case
of ViroLab, we have to deal with gLite [16] which is installed
on EGEE and also with the Application Hosting Environment
(AHE) [17] which is a lightweight middleware focused on accessing
applications on the Grid in a user-friendly way and can provide
interface to DEISA as well. In order to solve a scientific problem
in a virtual laboratory, it is often required to combine results
produced by a set of these tools, as well as by local applications.
This procedure is time-consuming and can be performed only
by skillful users. Research can be facilitated by integrating all
local tools, Web Services and Grid jobs into a single experiment
which uses a uniform and simple notation to describe all steps
of a scientific process and automate it entirely. In this paper, we
also describe how this can be achieved using the proposed Grid
Operation Invoker.

This paper is organized as follows: Section 2 provides an
overview of the related work on providing access to Grid middle-
ware systems. Subsequently, in Section 3, we introduce the main
concepts of the Grid Operation Invoker and then, in Section 4, its
role in the virtual laboratory. In Sections 5 and 6, a detailed descrip-
tion of enhancements provided to add support for job-based mid-
dleware systems is presented on the example of LCG/gLite (EGEE).
Section 7 describes support for asynchronous (non-blocking) invo-
cation of operations. In Section 8 we report on experiments which
were performed in the virtual laboratory exploiting GOI. The fi-
nal section includes a summary and a brief presentation of future
work. Our preliminary approach to running script-based applica-
tions on EGEE Grid was presented in [18].

2. Related work

Numerous software frameworks have been developed to
provide high-level access to Grid services using heterogeneous
middleware systems. The Grid Application Toolkit (GAT) [19],

currently evolving into the Simple API for Grid Applications
(SAGA), provides a language-neutral API to basic Grid use cases,
such as operations on files, monitoring events, resources, jobs,
information exchange, error handling and security. However, it
does not introduce an object-oriented API to invoke applications.
A similar approach has been undertaken by the authors of the Grid
Services Base Library (GSBL) [20]; however it is still limited to such
operations as job submission and file transfers. Multiple Grid and
cloud computing middleware systems can be also accessed using
g-Eclipse tools [21], but they do not support high-level application-
oriented interfaces.

Another high-level approach is implemented in NetSolve/
GridSolve [22], which is an RPC-based system where a client
delegates the execution of an operation to a selected server
providing input parameters. The server executes the appropriate
service and returns output parameters or error status to the client.
Since GridSolve requires installation of specific servers, its usage
on such infrastructures as EGEE is not straightforward.

Portal-based systems, like GridPortlets and OGCE [23], also pro-
vide a means for accessing multiple middleware technologies.
These solutions are usually dependent on a specific portal technol-
ogy (e.g. Java portlets), although recently (in the VINE toolkit [24])
there have been attempts to extend their usability to more generic
applications.

One should also consider systems used for migrating so-called
legacy code applications to Grid or to Grid Services. Examples of
such systems include LGF [25] which wraps legacy code as Globus
4 services on a fine-grained level, or GEMLCA [26], which offers
a more coarse-grained approach. However, they are limited to a
single middleware suite, such as Globus 4.

Other platforms which aim to facilitate the usage of Grids
by scientific applications include workflow systems [27], such
as K-Wf Grid [11], which manages workflows on multiple levels
of abstraction; Kepler [10], which allows integrating multiple
actor models, and Taverna [12], successfully applied to many life-
science applications. The main drawback of workflow systems, in
comparison to the scripting approach, is the limited expressiveness
of graphical notations when applied to more complex experiments.

None of these approaches propose a complete solution for
running applications on different Grid middleware systems.

3. Goals and concepts of Grid Operation Invoker

The Grid Operation Invoker is designed as a module of the Vir-
tual laboratory engine and it is responsible for communication
with diverse underlying middleware technologies. Having ana-
lyzed the needs of the scientific community, as well as similar solu-
tions, we have defined requirements for the Grid Operation Invoker
system. The main functional requirements are as follows:

- to provide uniform and coherent interface to the functionality
of applications accessible using heterogeneous middleware,

- to provide APIs on both high and low level of abstraction
(allowing developers to define the required functionality or
choose a specific instance),

- to handle required data conversions (from Ruby types to SOAP
and Java objects) in a transparent manner.

Besides listed functional features, the GOI module should also
conform to non-functional requirements, including the following:

to integrate all external libraries,

- to remain OS-independent,

- to ensure ease of extending the system with support for
emerging middleware technologies,

to enable operation both as a standalone solution and as part of
a bigger system, such as a virtual laboratory,

to remain unobtrusive at the server (provider) side.
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Fig. 1. Three levels of the abstraction over the Grid environment: Grid Object class,
implementation and instance.

In order to fulfill these goals we introduced the concept of Grid
Objects which are representatives of services, components or jobs
on the client side. Grid Objects are instantiated within the exper-
iment script and by invoking methods on them a programmer is
able to access specific operations on remote resources. It is note-
worthy that GOl is focused on access to computing middleware and
resources. Access to data resources remains out of scope of GOI, and
in ViroLab virtual laboratory this complementary aspect is handled
by a dedicated tool, i.e. the Data Access Client [28].

Fig. 1 illustrates the Grid Object hierarchy. The main reason
behind introducing this hierarchy and its associated layers of
abstraction was that the complexity of the heterogeneous, distri-
buted environment should be hidden from end users. Developers
of an application should not be concerned with manually interfac-
ing all underlying middleware technologies — they should instead
be focused on the problem they are solving.

Each Grid Object Class is an abstract entity which defines a set
of Grid Operations. These operations are invoked from the script,
while the actual computation is performed on a remote machine.
Each Grid Object class may have multiple Implementations with dif-
ferent middleware technologies representing the same functional-
ity. Each of the implementations may have multiple Instances, pos-
sibly running on different resources and thus with different levels
of performance. Grid Object instances of a specific class may use
a variety of middleware suites and therefore must be interfaced
using their specific protocols. Moreover, Grid Objects may have
various properties, such as stateless or stateful interaction mode,
synchronous or asynchronous operation invocation etc. Further-
more, Grid Objects may be private (for instance, the user deploys a
component in his/her experiment and only he/she can access it) or
shared between experiment runs and between users (for example,
publicly available services). All these properties are part of tech-
nology information that is used while creating a Grid Object rep-
resentative. Developers are not concerned with finding the opti-
mal instance and interfacing it; however, they must be aware of
the properties of each Grid Object. For instance, they must know
whether the Grid Object they are using preserves state between
invocations of operations.

A sample script demonstrating the invocation of the Decision
Support System (DSS) which suggests a drug ranking for a patient
with a specific set of HIV mutations is shown in Fig. 2. GObj
is a factory for Grid Objects: in line 4 it is used to create an
instance representing the DSS Web Service. Upon instantiation, the
operations of a Grid Object can be invoked directly, as seen in line
6. A usage of Ruby string operations, such as split () in line 5,
enables simple conversions, which would be nontrivial in the case
of graphical workflow systems and would often require specific
converter or adapter services.

require ’cyfronet/gridspace/goi/core/g_obj’

1
2

3 begin

4 dss = GObj. create(’org.virolab.DrugRankingSystem2’ )
5 mutations = *P1M I2L S3T P4Q E6G T7C’.split(’> ?)

6 res = dss.drs(’ANRS’,

7 ’reverse_transcriptase’,

8 mutations)

9 puts res

10 end

Fig. 2. A sample ViroLab experiment invoking the drug ranking Web Service using
the Grid Object library.
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Fig. 3. Grid Operation Invoker in the context of the GSEngine.
4. Architecture of Grid Operation Invoker

The Grid Operation Invoker is a library that provides a
uniform interface to multiple middleware technologies. It supports
abstraction over the heterogeneous environment as described in
Section 3.

Fig. 3 shows how GOI is positioned in the context of other
modules of the virtual laboratory. GOl is a part of GridSpace Engine
(GSEngine), which is the main execution server for experiments,
with an embedded JRuby interpreter. Descriptions of technical
information of Grid Objects are stored in the external Grid Resource
Registry (GRR) service and the Optimizer module (GrAppO) is
responsible for selection of optimal instances if more than one
instance is available for a specific object. The optimizer plays
a role similar to a broker and a scheduler known in workflow
systems and it uses resource information from the monitoring
subsystem. GOI also publishes events to the Provenance Tracking
System (PROToS) [29] which stores all the historical execution data
for the purpose of experiment result analysis and possible future
validation.

The Grid Operation Invoker has a modular architecture and
all components have well-defined interfaces. As a result, code
reusability, ease of extending the system and interoperability with
external components are ensured. For instance, if it is required to
cooperate with another optimizer, this can be easily accomplished
by providing a client implementing the required interface and
specifying that GOI should use this class. The same pattern applies
to using a registry.
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Fig. 4. Structure of the Grid Operation Invoker.

The Grid Operation Invoker system is divided into three
packages (see Fig. 4). The core package contains main parts of
the system. GObj is a factory that provides the uniform interface
for creating representatives for Grid Objects. It implements
the algorithm of choosing resource, loading an adapter for the
appropriate technology and producing a representative. It uses
dedicated clients to communicate with the optimizer and the
registry, which delegate queries to external systems, such as
GrAppO and the Grid Resource Registry. Adapter class is capable
of producing a representative (an object of the Resource class)
for a Grid Object using one specific middleware technology.
All adapter and resource classes are included in the adapters
package. Finally, the utils package consists of any additional
classes that are used by the GOI. Good examples are Future class,
which enables asynchronous operation invocations (see Section 7),
JobSpec and GliteWmsUIWrapper classes that are used by the
glite adapter.

GOl is implemented in JRuby, taking advantage of the dynamic
features provided by the language, such as dynamic method dis-
patch and code generation and evaluation at run-time. This en-
ables GOI to adapt to the heterogeneous and dynamic nature of the
computational environment. During interpretation of the script, at
the line in which the GObj factory is called to produce a repre-
sentative for a Grid Object, the GOI library comes into action.
An optimizer is queried for an optimal resource of the requested
Grid Object class and returns a unique id of the selected
resource. Based on this id, the technology information which de-
scribes the resource in technical terms (such as communication
protocols, endpoints etc.) is retrieved from the resource registry.
Once this technical data is known, a dedicated adapter for a specific
middleware technology is loaded and a representative is created
and used in the script as an ordinary Ruby object. For Web Services
it is enough to know the WSDL description, or the names of meth-
ods, and the SOAP endpoint (if no WSDL is available). Upon invo-
cation of a method on the Grid Object representative, the resource

object uses dynamic method dispatch to delegate the call using the
protocol supported by the specific middleware technology. In the
case of SOAP-based services a standard Ruby library is used, while
e.g. in the case of MOCCA the adapter uses Java client API to in-
voke remote methods on components. Ruby language employs the
duck typing paradigm which assumes that types of objects are not
checked, but it is checked if an object responds to a specific method
with a specific number of arguments. This approach is very conve-
nient, although calling a remote Grid Operation just to find that
the instance does not provide such an operation may prove too
expensive. Therefore, GOI checks the technology information to
determine whether a given Grid Operation is available for a Grid
Object representative. If not, an error is reported. What is more,
GOI catches all exceptions in remote Grid Operations in order to
handle them or report them in a user-friendly manner.

Whenever required, the developer can bypass the optimizer by
using a low-level API, but in such a case, a unique id or technology
data needs to be provided.

As already mentioned, the GOI can be easily extended. In
order to add support for other types of middleware, it is required
to implement an adapter class and a resource class. Developers
implementing support for external middleware packages may use
a wide range of libraries. These include standard Ruby libraries,
JRuby gems as well as Java libraries, which can be imported and
used within JRuby scripts. What is more, the scripting nature of
JRuby facilitates wrapping command-line tools, such as gLite WMS
User Interface.

A Web Services adapter has been available from the beginning,
implemented using the SOAP package from the standard Ruby
library. MOCCA components are also supported and the adapter
was implemented using the Java-based MOCCA client library
which supports dynamic method invocation. Adapters for job-
based middleware technologies such as gLite and AHE are the
subject of recent research and are described in detail in the
following sections.
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5. Extending GOI with local gems

Grid Objects which represent application-specific functionality
are often referred to as gems, by analogy to RubyGems [7] — a
standard for distributing Ruby libraries. Examples of ViroLab gems
are such services as the Drug Resistance Service [30] or the RegaDB
HIV sequence alignment and subtyping tools [31], all wrapped as
Grid Objects.

In addition to the Grid Objects corresponding to remote com-
putations, Local gems are introduced as a way of representing lo-
cal computation as a Grid Object. From the application developer’s
point of view local gems are another computational technology
and are accessed via the same uniform interface as other technolo-
gies. Local gems enable the developer to download the source of a
Ruby class, evaluate the source at run-time and execute it locally.
They facilitate sharing single classes that provide functionality us-
able for a scientific community, which is, however, too lightweight
to be deployed as a Web Service. Local gems are registered in the
Grid Resource Registry as a Grid Object Instance and their source
code is stored in the registry.

It is interesting to compare local gems to experiment scripts.
Both are written in Ruby and can provide some interesting
processing functionality. Experiments are stored in an application
repository [8] which is based on the SVN version control system
and can be shared between virtual laboratory users. Local gems,
on the other hand, are stored in the Registry. Experiments are
intended to be executed by end users (scientists or medical doctors
in ViroLab), while local gems are smaller building blocks, to be
used by experiment developers. For this reason, we decided that
both forms of sharing application scripts in the virtual laboratory
are useful and complementary. Additionally, it is possible to
register interesting experiments, or parts thereof, as local gems, to
encourage code reuse.

6. Support for job-based middleware

In order to integrate job-oriented middleware such as the EGEE
LCG/gLite with the Grid Operation Invoker, an object-oriented
representative of a job is required. According to the architecture
(Section 4) this requires a technology adapter (Grid Object imple-
mentation) which would delegate the invocation of its operations
to the submission of jobs using specific Grid middleware, and re-
turn a result upon successful completion of a job.

In contrast to the already implemented adapter classes, capa-
ble of producing client-side Grid Object instance representatives
of Web Service and MOCCA middleware, it is not possible to im-
plement a generic factory for representatives of jobs. Web Service
and MOCCA components are, by their nature, object-oriented and
are contacted using a well-defined interface. Representatives of
Grid Object instances published with these technologies are actually
stubs (proxies) which provide the same interface and therefore can
be generated automatically. On the other hand, Job-oriented mid-
dleware enables us to execute command-line applications which
do not provide a remote API. Functionality provided by an applica-
tion is organized in a set of methods, and is determined on the basis
of command-line input parameters. As a consequence of this fact,
the application has to be wrapped with a special class that exposes
its functionality as Grid Object methods.

Each wrapper class should be application-specific. It is common
practice in various legacy-code wrapping systems to define
a special descriptor language (e.g. XML-based) to specify the
mapping between object operations and specific command-line
parameters or program execution. In our case, since Ruby is used
as the implementation language, it is natural to also use Ruby
for specification of this mapping. Therefore, we have decided that
wrapper classes would be local gems, able to prepare inputs,

ahe = GObj. create(’org.virolab.ahe’)
call0 = ahe.submit(’sort’, ’sort-job’, 1,
’Mavrino’, ’/home/tomek/config.txt’)
call0.wait
# returns a path to a file:
call0.get_result(’ /home/tomek/results/’)

oIS B A - I SR

sortl = GObj. create(’org.virolab.Sort’)

calll = sortl.sort_start(’/home/tomek/input.txt’)
calll.wait

# returns a path to a file:

calll.get_result(’ /home/tomek/results/’)

e e
AW N = O ©

sort2 = GObj. create(’org.virolab.StringSort’)
15 # returns array ['Ania’, 'Kasia’', 'Tomek']
16 result = sort2.sort([’Tomek’, ’Ania’, ’Kasia’])

Fig. 5. Three approaches to invoking a sample sort application accessible with
AHE middleware.

submit a job, manage it and retrieve results. Such local gems, in
turn, can use a lower-level Ruby API to interact with middleware-
specific job management operations.

To demonstrate the various possibilities of wrapping job-based
applications as local gems, we show a simple sort application
which is a tutorial example of AHE middleware. Fig. 5 presents
three approaches to invoking this application. The first one uses the
low-level AHE adapter API represented by ahe Grid Object (line 1)
directly: a user has to specify all the details of the submitted job
(lines 2-3), provide files with input and path for storing output
and use a generic submit () operation. The second Grid Object,
sortl (line 8), is a local gem which introduces a higher-level
sort_start () method that accepts a path to an input file and
hides some details of AHE usage. The last one, sort2 (line 14), is
a local gem providing a typed method which takes the parameters
as array and returns also an array object (line 16): all the details of
using AHE middleware are hidden.

As an example of how such a local gem is built, let us consider a
NamdWrapper class which enables to use the molecular dynamics
NAMD [32] application (Fig. 6), which has been installed on
a Cyfronet EGEE site. The wrapper uses two classes provided
by the Grid Operation Invoker: GliteResource and JobSpec.
The former class uses a middleware specific user interface
wrappers (GliteWMSUIWrapper) that provide Ruby API to glite
middleware by wrapping the command-line user interface. The
latter enables to create job specification and to generate a JDL file
for the job.

The wrapper class (Fig. 6) implements the molecule_
simulate method that hides details about job submission and
result retrieving. The method accepts a name of the job, an array
with names of input files, an array with names of expected output
files and the number of nodes used for running the simulation. In
the body of the method a JobSpec object is created that includes
the information provided as input parameters (lines 5-17). Next,
the glite resource object (line 21) is used to submit the job and
obtain a CallId object (line 23). This object contains the job id
returned by the glite-wms-job-submit command and enables
to monitor job status and download output and error files (line 26).
The path to results of the simulation is returned. If it is beneficial
to convert the outcome of job to Ruby objects, this can be done in
the wrapper class.

It should be noted, that in this example a specific host
(zeus02.cyf-kr.edu.pl) was manually selected by the script devel-
oper. In a general case, however, this decision is left to the gLite re-
source broker; so no additional involvement is required on the part
of the script developer. On the other hand, when invoking opera-
tions on Grid Objects representing Web Services or components,
the GrAppO optimizer module acts as a broker and selects the op-
timal instance.
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require ’cyfronet/gridspace/goi/adapters/glite_resource’

1

2

3 class Namd

4 def molecule_simulate(jobName, inputs, outputs, nodeNumber)

5 jobSpec = JobSpec.new

6 jobSpec . executable = ’/bin/bash’

7 jobSpec.arguments = (’$V0_VOCE_SW_DIR/NAMD_2.6/namd.run alanin.namd’)
8 jobSpec .stdoutput = ’namd_zeus.out’

jobSpec.stderr = ’namd_zeus.err’

10 outputs.each{|output |

11 JjobSpec. add_to_output_sandbox(output)

12 }

13 inputs.each{|input|

14 jobSpec. add_to_input_sandbox(input)

15 }

16

17 jobSpec.add_property (’Requirements’ , ’other .GlueCEInfoHostName=="zeus02.cyf-kr.edu.pl"’)
18

19 techlnfo = {’type’ => ’GLITE’, ’name’ => ’NAMD’, ’method#0’ => ’submit’}
20
21 namd = GliteResource .new(techlnfo)
22
23 callld = namd.submit(jobSpec)
24 callld .wait
25 if callld.success?
26 result = callld.get_result(’/home/people/ymbartyn/jobs/outputs’)
27 elsif callld.failed?
28 result = nil
29 end
30 return result
31 end
32 end

Fig. 6. Local class wrapping an EGEE NAMD job. It assumes that NAMD package is available on the EGEE infrastructure.

The predecessor of the gLite, LCG/EDG middleware is also
supported by the Grid Operation Invoker. EdgUIWrapper and
LcgResource classes provide analogous functionality as those
presented in the Namd wrapper example.

7. Asynchronous invocation of Grid Operations

The middleware technologies supported by GOI can offer vari-
ous interaction modes: either simple, stateless invocations (in the
case of Web Services) or a stateful mode (WSRF, MOCCA compo-
nents) where an instance of a component may be created and then
subsequent calls can operate on that particular instance. On the
other hand, for job-based middleware, such as gLite or AHE, the
natural interaction mode follows the submit-get_status-get_result
pattern. Additionally, as was shown in the previous section, it is
possible to wrap such job-based application within a local gem
which can provide a single stateless operation, no different from
e.g. a Web Service call. In a similar way, it would be worth to add
support for asynchronous on non-blocking invocation mode to the
Web Service or component-based operations.

Asynchronous invocation of operations has many advantages:
first of all, it allows remote processing to proceed in parallel,
which can introduce a significant speedup if multiple resources
are available on the Grid. It enables some time-consuming tasks,
such as creation of component instances, to run in the background,
which can result in performance improvement of experiment
execution. Other existing distributed processing frameworks often
support asynchronous call of remote operations: NetSolve [22]
provides an API for non-blocking calls, the RMIX [33] library offers
asynchronous extensions to Java RMI with the usage of futures
and callbacks and by introducing specific naming conventions,
whereas ProActive [34] proposes a programming model where
all invocations are asynchronous by default and futures are
transparent.

When designing the non-blocking invocation support for Grid
Operations in GOI, we decided to introduce an API which could be

1 sequence = ">Demo-sequence\nCCTCAAAT ... "

2

3 region = "RT"

4

5  align_tool = GObj. create(’regadb.RegaAlignment’)

6  subtype_tool = GObj. create(’regadb.RegaHivSubtype’ )
7

8  alignment = align_tool.async_align(sequence, region)

10 subtype = subtype_tool.async_subtype(sequence)

12 puts "Virus subtype: " + subtype.get_result
13 puts "Alignment result: " + alignment.get_result

Fig. 7. Example showing the usage of asynchronous calls to introduce parallel
execution of alignment and subtyping tools.

simple but explicit. Therefore, we proposed a naming convention
where adding a async_ prefix to the method call results in
asynchronous invocation. The return of this method is a future
object which provides get_result(), done? and cancel()
methods. An example of the usage of asynchronous invocations
is shown in Fig. 7, where two time-consuming tasks can be
executed in parallel. In the listing, we can see that align() and
subtype () methods are invoked asynchronously (lines 8 and 10).
Synchronization occurs in lines 12 and 13 when the results of
operations are requested.

The implementation of asynchronous invocations follows the
main design principle of the Grid Operation Invoker, namely to
remain unintrusive on the server side. Therefore, all concurrency
has to be introduced on the client side and the underlying mid-
dleware can remain unchanged. It is important for a script devel-
oper to remember that although asynchronous invocations intro-
duce concurrency on the client side, the server-side invocations are
unchanged; so the whole state of the call is kept on the client side
and the future objects are not persistent. For this reason, it is im-
possible to save them e.g. in a database and check their status in
a different execution scenario, which can be done in the case of
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require ’cyfronet/gridspace/goi/core/g_obj’

namd = GObj. create(’ cyfronet .gridspace.gem.Namd’ )

[ N

jobName = ’namd’

6 inputs = [’alanin.namd’, ’alanin.params’,
’alanin.psf’, ’alanin.pdb’]

8 outputs = [’alanin.coor’ , ’alanin.vel’,

9 ’alanimxsc’]

10 nodeNumber = 4

12 namd.molecule_simulate(jobName, inputs,
13 outputs, nodeNumber)

Fig. 8. Application submitting a job that executes NAMD on the EGEE.

Fig. 9. Visualization of a sample experiment result (alanin molecule in water
environment).

job-based middleware, where call_id objects represent the job
identifier at the server (Grid middleware) side.

8. Application examples

The Grid Operation Invoker was implemented and integrated
with the ViroLab Virtual Laboratory. A sample application made
accessible there is the NAMD molecular dynamics package. The
source code of a sample experiment that performs a molecular
dynamics simulation for an alanine amino acid in a water envi-
ronment is presented in Fig. 8. At the beginning of the script, the
developer requires a GObj class that provides a uniform inter-
face to create Grid Object instance representatives (line 1).
Subsequently, in line 3 a representative of the NAMD application
is created. Properties of the job are defined in lines 5-10 (job
name, input and output files and, finally, the number of nodes used
for computation). Line 12 invokes the molecule_simulate ()
method which automatically generates a JDL file for the job, sub-
mits the job, monitors its status and retrieves results upon success-
ful completion or informs the user about an error.

This experiment may be further extended by adding invocations
of the locally installed VMD (Visual Molecular Dynamics) [35]
toolkit (a molecular visualization program) in order to display the
obtained results (consult Fig. 9 for a sample view).

GOI is also used to run other experiments in the Virtual
laboratory, including a full experiment called “from genotype to

drugresistance”. It uses gems from RegaDB for HIV genotyping [31]
which were integrated using WTS [36] services. Data mining
experiments can also be built using the Weka [37] toolkit wrapped
as MOCCA components. At present, more services are being added
as new gems; among them are the Web Services from the European
Bioinformatics Institute [5] and various demonstration services
used for education in computational science.

9. Summary and future work

In this paper we have described the Grid Operation Invoker as a
tool facilitating application building, used by scientific experiment
developers who are familiar with simple script programming. To
hide the complexity of details which are usually required to deal
with Grid middleware technologies, we have introduced the Grid
Object abstraction, which represents any type of computational
resource. The support for Web Services and MOCCA components as
sample technologies was present from the earliest version of GOI.
In this paper we have described how GOI was extended to support
Grid Objects representing local processing by local gems and how
this mechanism can be used to add support for middleware
systems based on the batch job submission processing model.
By introducing simple wrapper classes implemented in Ruby,
we can add an object-oriented interface to various applications
executed on EGEE using LCG/gLite middleware as well as those
available via AHE. This new technology was tested using the NAMD
molecular dynamics package and integrated into the ViroLab
Virtual Laboratory.

As the main achievement of our work, we consider the creation
of the Grid Object abstraction, which can be used to represent
and access such diverse technologies as Web Services, distributed
components and job processing systems. Although such multiple
levels of abstraction have been earlier applied to workflow systems
(e.g. in [11]), there are many scenarios where the scripting
approach has clear advantages. Therefore we consider GOI and its
application model (with an object-oriented abstraction over Grid
middleware) an interesting alternative to graphical workflow-
based tools.

Our experience from the development of GOI and the applica-
tions that use it allows some general conclusions. First of all, we
consider that using Ruby as a high-level workflow language was
a good choice since it provides a flexible means of combining co-
ordination of remote computing (workflow) with local processing
required by experiment scenarios. Additionally, implementing GOI
and Grid Objects as Ruby library was convenient due to the dy-
namic nature of the language. The proposed client-side approach
proved useful and practical in the world of heterogeneous middle-
ware, while the Grid Object abstraction was demonstrated to be
rich enough to handle diverse technologies and interaction modes.
GOl is easily extensible due to its modular architecture and a rich
set of libraries that can be used.

The developed system meets both functional and non-functional
requirements, although its development involved tackling both
conceptual and technical difficulties. The former include merg-
ing different interaction models and finding an appropriate set of
data for describing instances using diverse middleware packages.
The latter concerned resolving conflicts among client-side Java
libraries.

We should also mention that although our implementation of
GOl is limited to the Ruby language, the main design concepts
remain generic. It would be possible to implement GOl in any other
dynamic language such as Perl or Python and all other components
of virtual laboratory such as Registry or Optimizer could be directly
used. GridSpace Engine was successfully adopted in two research
projects: GREDIA [38] and the computational chemistry portal
Chempo in EGEE.
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Further work involves analysis, design and implementation of
an introspection mechanism that will enable more interactive
execution of scripts. This may be useful for collaborative and
exploratory programming and will allow the user to immediately
see and react to the results of Grid operations performed. We
also consider combining the scripting and workflow approaches,
so that workflow jobs may be submitted from within a script,
or the scripts may be integrated into higher-level workflows.
Moreover, we are working on a module enabling us to plug in
diverse security mechanisms, such as GSI [39] and Shibboleth [40].
Support for more middleware technologies, such as UNICORE [41]
and WSRF [42], is also under development. Thereafter we would
like to integrate more Grid Object instances to be able to build more
complex experiments.
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