Available online at www.sciencedirect.com

&5 ScienceDirect Procedia Computer
: Science
ELSEVIE Procedia Computer Science 00 (2011) 1-10

International Conference on Computational Science, ICCS 2011

Component Approach to Computational Applications on Clouds

Maciej Malawski®™* Jan Meizner?, Marian Bubak®®, Pawet Gepnelrd

“AGH University of Science and Technology, Krakow, Poland
bCenter for Research Computing, University of Notre Dame, USA
¢Informatics Institute, Universiteit van Amsterdam, The Netherlands
4Intel Corporation, Pipers Way, Swindon Wiltshire SN3 1RJ, United Kingdom

Abstract

Running computational science applications on the emerging cloud infrastructures requires appropriate program-
ming models and tools. In this paper we investigate the applicability of the component model to developing such
applications. The component model we propose takes advantages of the features of the [aaS infrastructure and offers a
high-level application composition API. We describe experiments on a scientific application from the bioinformatics
domain, using a hybrid cloud infrastructure which consists of a private cloud running Eucalyptus and the Amazon
EC2 public cloud. The measured performance of virtual machine startup time and virtualization overhead indicate
promising prospects for exploiting such infrastructures along with the proposed component-based approach.

Keywords: cloud computing, component model, virtualization, performance, laaS, FASTA

1. Introduction

Recently, cloud computing has become an interesting alternative method of providing computing and storage
resources, which can be of potential interest for the computational science community. Cloud providers such as
Amazon (EC2) or Microsoft (Azure) are starting to offer their resources to researchers free of charge while large-
scale projects consider using cloud resources instead of buying and maintaining their own infrastructures. The Virtual
Physiological Human research community [1] can serve as an example of this trend. At the same time some computer
centers (e. g. SARA) have started to operate their own clouds [2]. Although cloud computing can be considered
an evolution of grid systems as it focuses on distributed shared resource provisioning, there are some differences
resulting e.g. from technological (virtualization and different middleware suites) and organizational (e.g. cost models)
perspectives. These similarities and differences give rise to interesting research issues regarding methods, tools and
environments for programming and execution of scientific applications on such infrastructures.

We have investigated the applicability of the component model to providing an environment for programming
and running computational science applications on the cloud. It is based on our experience with the development of
component models and tools for grid systems, such as the MOCCA framework [3] based on CCA [4] standard and
the Grid Component Model (GCM) [5] based on Fractal. We observe an analogy between the distributed components

*Corresponding author
Email address: malawski®@agh.edu.pl (Maciej Malawski)

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 2

which are dynamically deployed on a set of component containers and an Infrastructure-as-a-Service (IaaS) cloud
model where virtual machine instances are dynamically deployed on the cloud. This analogy drives us to define
the principles of a component model extension in such a way that cloud virtual machines may be considered as
components which can be deployed, configured and composed as in the traditional component-based application.
Besides its advantages such as portability and better isolation of components thanks to virtualization, this approach
also introduces potential overhead which may be associated with the deployment and startup times of virtual machines
as well as with virtualization, e.g. Xen. The objective of our investigation was to elaborate the cloud-component
approach and to estimate the performance degradation.

To answer these research questions, we have organized the paper as follows. Section 2 discusses the related work
on cloud computing for scientific applications. In section 3 we describe the rationale for the cloud component model
and outline the principles of our approach. Section 4 describes a high-level scripting API which can be used for
development of components and client applications. In section 5 we describe the experiments which we performed on
a hybrid cloud installation consisting of an Intel cluster and Amazon services running a bioinformatics application on
the example of the ssearch36 program from the FASTA suite [6]. We measured the startup time costs, the virtualization
overhead and the scalability of the application. In section 6 we draw conclusions and outline future work.

2. State of the art

Cloud computing is of interest for the computational science community as a promising alternative and extension
of the grid computing model [7]. The advantages of virtualization include on-demand deployment and access to
computing resources and also its applicability for provenance studies and result reproduction [8].

Several programming models and abstractions have been proposed to support scientific applications on cloud
infrastructures. Among them one of the most promising is the workflow model. Experiments with e.g. Pegasus
indicate [9] the advantages and costs of using these infrastructures. Traditional job processing techniques known
from e.g. Condor can be applied to cloud infrastructures [10]. The Map-Reduce model known from Google [11]
has been effectively used for computationally intensive bioinformatics applications [12]. There are also examples
of clusters and grids being provisioned on demand [13], where traditional processing techniques can be applied.
The Aneka framework proposes a programming model for economic-based scheduling and execution of cloud-based
applications [14]. Other programming approaches (e.g. RightScale [15]) rely directly on cloud computing services.

Component programming model has been of interest for business and scientific applications for a long time and
standards such as Common Component Architecture (CCA) [4] and Corba Component Model (CCM) [16] were cre-
ated to support composition and deployment of applications on distributed resources. Of special interest is the Grid
Component Model (GCM) [5], designed to support large-scale distributed applications on grid computing infrastruc-
tures. Component models have been also applied to large-scale master-worker applications [17]. Our previous work
on the MOCCA component environment yielded a component framework for grid applications [3]. Component model
is similar in many aspects to service-oriented architecture (SOA), but here we prefer to use the term “component” to
emphasize that it is a unit of deployment.

Cloud computing relies, to a large extent, on virtualization techniques which offer flexibility and platform inde-
pendence; however they also impose certain overhead upon systems and applications. Experiments and benchmarks
indicate that virtualization overhead, whether through paravirtualization or Intel VT extensions [18, 19], is not partic-
ularly significant. The overhead for scientific applications tends to be more visible, especially in the case of parallel
tightly-coupled benchmarks [20]. Recent studies of bioinformatics applications, including similarity searches, report
overhead on the order of 10% [21] when running these applications on clouds.

The above described effort in the area of computational science applications on clouds indicates that the topic still
requires research on new programming abstractions, improving efficiency and minimizing overhead. We believe that
the work described in this paper constitutes an interesting approach in this regard.

3. Component model for cloud applications

3.1. Rationale for the cloud component model
The motivating observation for our work is the analogy between distributed component models and the capabilities
offered by cloud infrastructures (Table 1). In the case of traditional distributed component models, such as CCM [16],

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 3

Table 1: Analogy between traditional distributed components and components on the cloud.

Distributed Components Cloud components

Component Virtual machine instance

Container Cloud execution environment (EC2, Eucalyptus)

Create component instance Run instance on the cloud

Component package Virtual Machine Instance (virtual appliance, AMI, EMI)

Composition (connecting components) Passing appropriate references (WSDLs, queue names, etc.)

an application is composed of independent units of code and execution called components. Components conform to
a specific component standard which defines the interfaces (ports), dependencies, and rules governing interactions
between the components, their lifecycle and other aspects. Components are deployed in containers which provide the
execution environment and a virtualization (or abstraction) layer which isolates the components from the operating
system and actual computing resources. Component models often define packaging standards which facilitate reuse
and deployment of component code in a distributed environment.

IaaS cloud platforms are in many aspects similar to the traditional distributed component models, although there
are obvious differences on the level of virtualization and the scale of the environment. The term “component” may
denote a virtual machine instance which can be executed on the cloud. Such a “heavyweight” component includes a
complete operating system with libraries required to execute the application code. The size of such a virtual appliance
is definitely greater than that of a traditional component developed e.g. in Java, but the advantage is its full portability
and OS independence. The role of container is played by the IaaS cloud platform which provides a hosting envi-
ronment using virtualization technologies for creating components on demand. Thus, the whole Amazon EC2 [22],
as well as the private Eucalyptus [23] cloud, can be considered large-scale containers for components. Actually, the
API which is provided by Amazon and other cloud platforms enabling such operations as “create instance”, “describe
instances” or “destroy instances”, resembles the API provided by component standards such as CCA, CCM or Frac-
tal. Component packaging can be compared to standards for bundling and storing virtual machine images which are
provided by cloud providers.

Based on this analogy we propose a component model which combines the advantages of both approaches. The
advantages resulting from such a combination are as follows:

e On-demand deployment of custom application code on the infrastructure: computational science applications
in the form of virtual appliance components can be easily deployed on the resources available on the cloud;

¢ Platform independence thanks to virtualization: ability to compose applications with e.g. Linux- and Windows-
based components which is often the case in modern complex application scenarios requiring integration of
multiple components produced by multidisciplinary teams;

o Better support for heterogeneous and legacy systems which impose specific software dependencies;

e Access to cloud-based services such as storage, queues and databases: Cloud platforms, in addition to basic
TaaS capabilities, provide many other useful services which can be likened to container-provided component
services;

e Better provenance and reproducibility thanks to permanent storage of software snapshots used for performing
computations;

e On-demand pricing model well suited for multiphased computational science applications; It may become more
economical for research teams and funding agencies to lease these resources on-demand from cloud providers
instead of directly purchasing equipment such as servers and storage.

Clearly, the cloud computing model and the proposed component-based approach have drawbacks as well as
advantages. Some of them are of an organizational or economical nature, such as pricing models, vendor lock-
in problems, security issues and lack of standards. Here we focus on technical limitations, namely performance
degradation and overhead introduced by the cloud platforms and virtualization technologies as well as by the proposed
approach of creating “heavyweight” components in the form of virtual appliances. We believe that these limitations,
although noticeable and measureable, can be estimated and that their cost can be minimized.

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 4

. MasterPort
O MasterPort
Master
Master
ResultPort ﬂ O Worker Port
ResultPort ﬂ O Worker Port f H
t v 0 O
=3
:0 O3 sd O
S O] e <]
€] D le] = D D <
s[1 Oz« 3 Oz
30 O8 e *
[i4 - = ResultPort 2 Worker Port
r g o Al T
ResultPort (™ Q7 Worker Port v v v
Worker CP t? CP Rj CP t?
‘ Worker ‘ ‘ Worker ‘ e ‘ Worker ‘
Single component Collection of components

Figure 1: Simple Master-worker application decomposed into components. The left-hand side shows a single Worker instance, while on the
right-hand we can see a collection of worker components connected to the same queue. The Master component is the same in both cases.

3.2. Principles of the proposed cloud component model

As indicated above, the main principle of the proposed component model is that a component is a virtual machine
deployed on demand on the cloud. The component is packaged in the form of a virtual appliance, i.e. an operating
system image with all the libraries and code required to run the component. As the component has to conform to some
standard in order to be composable with other components, we define several types of interfaces which a component
can have. The interface (port) types which we have identified include: (1) web service interfaces using SOAP and
WSDL,; (2) REST interfaces available using HTTP; (3) queue interfaces for accessing e.g. Amazon SQS or AMQP
services; and (4) data ports for accessing cloud storage such as S3 object store or MongoDB store.

The list of port types is intended to be open, since more port types (e.g. streaming ports or different data source
types) may become necessary depending on the application requirements. The common feature of these interfaces
is that they can be dynamically configured at runtime in the process of application composition (for instance, Web
service endpoints can be provided and queue identifiers assigned).

The composition process is based on the dependency injection design pattern so that the component itself only has
to provide the basic functionality allowing it to be configured. This functionality has to be provided by a simple REST
API which includes operations for: listing component ports (introspection), setting component ports (composition,
dependency injection), initiating the processing of a component (lifecycle management). This minimal set of API
operations in the form of a REST interface allows the component to be developed using virtually any programming
language and platform, from lightweight scripting languages (such as Python or Ruby) to more sophisticated solutions
(such as Java-based ESB or .NET platforms).

Such a simple component model facilitates building complex applications which take advantage of the capabilities
offered by cloud services. Fig. 1 shows a simplified processing application representing a master-slave computation.
The master and the worker are two component instances which communicate using queue interfaces to exchange
computing tasks and their results. Additionally, the master provides a Web service interface (MasterPort) which
can be used to initiate computation by providing input data. The master-worker application demonstrates several
features of the proposed approach. First of all, the components provide standard interfaces so they can be dynamically
connected and interacted using standard protocols. Moreover, by using queue ports, the components are not tightly
coupled to each other: actually, they are not aware of the existence of their partners. It is thus possible to e.g. add
more worker components and distribute the load among them. Moreover, it might be possible to dynamically adjust
the number of workers based on the load or queue length.

We are convinced that such a minimal but powerful component model provides a convenient abstraction for pro-
gramming and execution of cloud-based applications. Although heavyweight in terms of packaging (as it requires
components to consist of full virtual machine images), it remains lightweight and flexible in terms of programming
interfaces and APIs.

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 5

require ’rubygems’
require ’cloud_obj’

count = 16
input.data = ... o il ’

woR W —

7 master = CloudObj.new(’test.sqs.Master’)
8 master.set_port(’worker’,’queue_worker?’)
9 master.set_port(’result’,’queue_result’)

11 master.compute(input_-data)
12 master. start

14 workers = CloudObj.new(’test.sqgs.Worker’, count)
15 workers. set_port(’worker’ ,’queue_worker’)
16 workers. set_port(’result’,’queue_result’)

18 workers. start
20 ...# wait for results from the master
21 puts master.status

22 puts master.result

24 workers. destroy
25 master. destroy

Figure 2: Script code for composition of sample master-worker components.

4. High-level API and prototype based on Ruby

The proposed component model, in addition to defining component interfaces (based on REST, see Section 3.2),
should also provide an interface enabling clients to interact with the framework. The client interface in the form of API
should provide the basic functionality to create components, connect their ports and invoke operations on component
interfaces. The interface should be positioned on a high level of abstraction, allowing users to specify component
classes and interface names and not to deal with low-level cloud infrastructure details.

We illustrate the usage of the proposed high-level API on the example shown in in Fig. 2, which corresponds to
the right-hand diagram in Fig. 1. The API is an extension of our previous work on grid operations [24] and is provided
in the form of a Ruby gem (lines 1 and 2). Upon setting configuration and input parameters we create an instance
of the component on the cloud (line 7) by providing a component class name (’test.sqs.Master’). The class name is
mapped to the actual virtual machine image by the registry so that the script does not deal with such details. In lines
8-9 ports of the components are connected to two queues. Line 11 invokes an operation on the component using its
REST web service; subsequently (lines 14—18) a similar set of operations is run on a collection of worker components
(the number of worker instances is parameterized). The components can be accessed using REST methods to check
their status or results (lines 20-22). Finally, the components can be destroyed which results in termination of virtual
machine instances.

The current prototype of the framework for development of components and client tools is written in Ruby. The
prototype supports Amazon EC2 public cloud and Eucalyptus private cloud framework through the use of RightScale
Ruby libraries. The framework contains a simple registry with descriptions of available component classes and maps
them to actual images stored on Amazon or local Eucalyptus installations. It supports delegation of security credentials
(access and secret keys) to component instances which are dynamically passed to the created component instances.
These, in turn, can use other cloud-based services. There is support for hybrid cloud installations, e.g. computing
instances created on the private cloud can still access public S3 storage or SQS queues from Amazon.

The prototype includes a framework for development of components as Ruby classes which provide a lightweight
method for wrapping e.g. legacy applications as components. We support the following interface types: (1) web
service interfaces using SOAP and WSDL - the prototype is based on the action web service Ruby library; (2)
REST operations using HTTP based on the Sinatra framework. The same framework is used to provide component
operations such as dependency injection via set_port operations. Other component methods are invoked based on
naming conventions using Ruby internal dynamic dispatch capabilities; (3) queue ports supporting interaction with
Amazon SQS queues; and (4) data ports supporting access to the Amazon S3 object store.

The Ruby framework has been prepared in a way which facilitates the process of component development and

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 6

testing. It is possible to instantiate components locally as plain Ruby objects (e.g. on the developer’s laptop) without
access to the cloud, virtualization and Web service stack. Component classes can then be tested using scripts very
similar to the one shown in Fig. 2 and the methods are then invoked locally. This experimental feature is very useful
as otherwise the cycle of development, deployment and testing on the cloud would be very time-consuming. The
prototype also provides serialization of method parameters based on JSON and access to application logs via HTTP.
Since it is wrapped as a Ruby gem, client tools can be easily used from any scripting framework, notably including
our GridSpace virtual laboratory which provides interactive Web-based programming and execution environment
supporting exploratory programming [25].

5. Experimental evaluation

The objectives of experiments were: (1) measurement of performance of a private cloud installation acting as a
component container, with focus on component instantiation time; (2) measurement of overhead incurred by paravirtu-
alization for a specific application; and (3) overall performance and scalability measurements of the whole application
to identify bottlenecks and possible optimization strategies.

We used the hybrid cloud environment which consisted of services provided by the public Amazon cloud (S3 and
SQS), with computing nodes residing on the Intel cluster running Eucalyptus software. For our test application we
selected the similarity search program from the FASTA [6] package.

5.1. Similarity search application

Searching for similarities between sequences of nucleotides or aminoacids is a very important task in bioinfor-
matics. It may be used to locate similar genes or pseudogenes among or within species. The sequence libraries
used for typical experiments can be quite large: for example, the human mRNA dataset comprises 46572 sequences
totalling 128 megabytes. The most accurate (and computationally demanding) similarity search application is the
Smith-Waterman algorithm. It is able to align two sequences of length m and n in O(mn) time. It is available in the
FASTA package and the implementation uses Intel SSE extensions to considerably speed up the computing. Neverthe-
less, similarity searches against a large sequence library may consume up to hours of CPU time. These searches have
to be often repeatedly iterated over multiple query sequences which produces heavy workloads of a parameter-study
type, but with a high variance of computing time per task, due to large differences in sizes between sequences.

In our experiments we ran the ssearch36 program from the FASTA package and compared human mRNA se-
quences by aligning each of the query sequences with the entire library. In addition to the whole mRNA dataset we
prepared a smaller subset comprising 3855 sequences and totalling 6.5 megabytes in size.

The FASTA package was wrapped as a virtual appliance component with our Ruby-based framework. The com-
ponent was configured to read input identifiers from the queue port, then to fetch input data from the object store
(using the assigned data port), run the computation and store similarity scores in the object store.

5.2. Experimental setup

Our performance tests were run on a hybrid cloud environment consisting of the following resources:

e Private cloud installed on an Intel cluster of 16 nodes, 12 cores each. The computing nodes were running the
CentOS Linux 5.5 operating system with Eucalyptus 2.0 cloud software, configured with Xen 3.1.2 hypervisor
using paravirtualization. Worker nodes were used to deploy worker components which were virtual machines
running Ubuntu Linux with FASTA software wrapped as components using our Ruby-based framework (see
Section 4). The virtual machine disk image size was 1GB.

e The head node of the cluster running Linux was used to create the Master component. It was instantiated
locally as a plain Ruby object (since it is not computationally intensive, it does not require a dedicated (virtual)
machine).

e Amazon SQS was used to provide queues which connect component queue ports. These ports were used to
send identifiers of sequences to be computed.

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 7

Head node of Intel cluster

(O MasterPort
p FASTA
/ »ouputrort G Master
/
/”/’ ResultPort [() Worker Port
7 4 1
/
/

Amazon SQS

,,,,, InputPort (5

<«

O0O0o0

Amazon S3

Result Queue

S>-O000«
"\ Work Queue

¥ - 7 / \‘.
\ ResultPort N \ w Worker Port
\‘anutPoﬂ 5 a ¢

Nodes of private cloud (Intel cluster)

(a) The hybrid cloud environment consisting of a private cloud installed
on an Intel cluster running Eucalyptus along with publicly-available
Amazon S3 and SQS cloud services.

600

192 +
96 3 "
48 *
500 + 32 o = 1
0 16
is]
§ R
o 400 ¢ I
n " i
£ N
o memmmﬂ’*
E 300 A
c #
L -
© &
2200
s " o
= all
1o ;@F—
0

o] 20 40 60 80 100 120 140 160 180 200
number of nodes

(b) Relation between the number of virtual machine nodes (compo-
nents) and time required for their instantiation in five cycles with dif-
ferent numbers of requested nodes - 16,32,48,96 and 192 respectively.

Figure 3: Hybrid cloud setup and performance

e The Amazon S3 storage service was used to store input sequences and output files. The sizes of these files
ranged from a few kilobytes to several megabytes, so they could not be passed directly within the SQS message
payload.

Tests were performed on the Urbana-4 Intel cluster. This system is based on 16 SR1625UR nodes. Each node is
a 1U server based on Intel S5520UR motherboard and utilizing 2 Intel Xeon X5670 CPUs. The Intel Xeon X5600
family is the first generation of six-core Intel CPUs dedicated to dual-socket servers it is also the first Intel six-core
processor with an integrated memory controller. Intel Xeon X5670 is a 32 nm six-core monolithic die with 12MB of
L3 cache, 3-channel integrated memory controller and integrated Quick Path Interconnect interface. The Intel Xeon
X5670 processor is a 6-core 95W processor clocked at 2.93GHz. It boasts many enhancements and new mechanisms
which improve both overall performance and per-watt performance. Every node was equipped with 48GB 1333MHz
DDR3 RAM and utilized a 450GB SAS 15K drive HDD. The Urbana-4 cluster is compliant with Intel Cluster Ready
version 1.5 (EM64T) and the system has 2250 GFLOPS of theoretical peak performance with an actual LINPACK
performance of 2047 GFLOPS (91% efficiency).

5.3. Private cloud performance

The goal of these tests was to measure the component instantiation time, which, in our case, is the startup time of
the virtual machine instance on the cloud. For the purpose of running a realistic scenario, we deployed (on our private
cloud) a virtual machine image component with minimal Ubuntu Linux 9.10, Eucalyptus tools, Ruby gems required
to access the cloud, and the FASTA computing program wrapped as a worker component. The size of the image was 1
gigabyte and the disk space assigned to the virtual machine was 2 gigabytes. The tests were run on the Eucalyptus 2.0
installation, which caches the virtual machine images on the computing nodes instead of fetching them each time from
central storage. Thus, the measured startup times included the creation of an empty virtual disk using the loopback
device, copying the image from the cache and booting Ubuntu Linux.

The results are shown in Fig. 3(b). In this figure we present a combination of results for five series of runs. For each
series we used a different number of requested nodes, i.e. virtual machines. This was achieved by issuing a request
to deploy a given number of component instances: 16, 32, 48, 96 and 192 respectively. Results clearly demonstrate a
strong positive correlation between the number of requested nodes and instantiation time of all nodes. Such behavior
was expected as the larger number of requested VMs causes Eucalyptus to start more of them at the same time,
resulting in higher load (especially I/O). We can also see that deployment of 192 machines takes approximately 9
minutes, which gives an average more then 20 machines per minute, while the minimum observed times were on the

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 8

order of 5 minutes. Naturally, the machines do not appear linearly, as the process of copying virtual machine images
runs concurrently but is limited by I/O (hard disk). This results in much slower instantiation at the beginning (when
images are being created) with speed increasing later on (when some VMs are booting but I/O is more or less idle).
During tests we initially observed some problems with Eucalyptus performance in the “system” networking mode, as
not all the machines properly obtained IP addresses and were registered by Eucalyptus as running. This is reflected in
Fig. 3(b) as a slowdown on the trailing end of longer series (involving 96 and 192 VMs). The problem only appears for
a large number of VMs as they use many IPs (1 IP per VM) and generate heavy network traffic which can apparently
confuse the Eucalyptus VM IP detection system.

The results obtained on our private cloud testbed can be compared e.g. to typical scheduling delays of batch
processing systems on clusters. In the case of the Zeus cluster at ACC Cyfronet AGH, the Maui PBS scheduler is
executed at intervals of ca. 200 seconds, which, on average, incurs a 100-second wait time for access to available free
resources. As we can see, the wait times for the component deployment using our private cloud are on the same order
of magnitude, resulting in similar user experience.

5.4. Virtualization overhead

The experiments were prepared in order to determine the relation between overhead and granularity of compo-
nents, or, more specifically, decide (for single-threaded program) whether we should wrap it as a single component
and run each component (virtual machine) per each core of the cluster, or create multicore virtual machines and run
multiple processes per each core within a component. For this purpose we prepared 6 configurations:

e |-Native-1: a single 12-core native Linux node, running 1 ssearch36 process;

e 1-Xen-1: a single node with a single 12-core Xen virtual machine (Linux guest), running 1 ssearch36 process;

1-Native-12: a single 12-core native Linux node, running 12 processes of ssearch36 program;

1-Xen-12: a single node with a single 12-core Xen virtual machine, running 12 ssearch36 processes;
e 16-Xen-1: 16 nodes, each hosting a single 1-core Xen virtual machine, running 1 ssearch36 process;
e 192-Xen-1: 16 nodes, each hosting 12 of 1-core Xen virtual machines, each running 1 ssearch36 process;

The results of these tests are shown in Fig. 4(a) and present the duration of computing phases (scan and display
time) as returned by the ssearch36 program, summed over a set of sample sequences. The first four configurations
were tested on an isolated system while the remaining ones used our component framework.

As we can see, in the isolated scenario the Xen overhead when running the single program on a single core can
reach 20% of display time and 15% of scan time. However, in more realistic configurations when all cores are used
to run the program concurrently, the differences between Xen and native performance are smaller (below 2% of total
time). This can be attributed to the fact that the application performance is mainly CPU-bound yet some time is
needed for I/O to store the results on the disk. When all the cores of a node are used by processes (in both Xen and
the native case) they have to compete for I/O and memory access. This results in longer computing times, making
the overhead introduced by Xen less significant. In the case of the last two columns the computing times are shorter
since the input data were obtained by worker components from the S3 object store, not directly from a file, which
presumably resulted in more even load distribution and minimized I/O competition between processes.

The conclusions are promising. First, the overhead of Xen in scenarios when many cores of the machine are
used is considerably lower than in the case of isolated single-core programs and in our specific case remains under
2%. Moreover, instantiating 12 virtual machine components on a 12-core node results in performance comparable to
running 12 processes on a native system. This means that, for CPU-intensive applications, the component approach
does not introduce significant overhead.

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 9

8000 -
=== Display 110
. Scan

7000 100 |

6000 80 b

80 |
5000
70 |

4000 60 [

3000

computing time in seconds
computing time in minutes

40 |
2000
30 b

1000 20k

10 b H H H H H H H H H i i
1-Native-1 1-Xen-1 1-Native-121-Xen-12 16-Xen-1 192-Xen-1 16 32 48 64 80 96 112 128 144 160 176 192

configuration number of nodes
(a) Cumulative computing time for both stages of running the ssearch36 (b) Computing times for application run on a set of 3855 query se-
program (scan and display stages) quences and 3855 library sequences. Number of nodes means the

number of virtual machine instances, each using a single processor
core.

Figure 4: Application performance measurements

5.5. Application scalability

The application (Fig. 3(a)) consisted of the two phases: (1) input preparation and (2) computing. In phase (1)
the master component retrieved input data from the file, placed the sequences in the object store and inserted their
identifies as well as run parameters in the queue. In phase (2) the worker components began processing the sequences
and stored results in the output object store. We observed that storing input data in S3 can be a time-consuming
process, while retrieval is (not surprisingly) considerably faster. The same holds for the performance of the SQS
queue. For these reasons, if the cost of a CPU-hour is relevant (as in the case of the Amazon cloud) it is reasonable to
prepare input data and tasks in the queue first, and start the worker components no sooner than once input is ready.

The computing times obtained on our private cloud versus the number of nodes are shown in Fig. 4(b). The number
of nodes is equal to the number of components, i.e. single-core virtual machines, each occupying a single core in the
cluster. The plot only shows the duration of the computing phase, including the time needed by components to receive
the task id from the SQS (using the queue port), fetch the input data from the S3 object store (using the data port),
process the data using the ssearch36 program and store output in S3. It can be observed that the speedup is regular but
not linear and that parallel efficiency drops from ca. 0.9 (for 64 nodes) to ca. 0.5 (for 192 nodes). This behaviour is
natural given significant wide-area network latencies and can be potentially further optimized by either moving data
closer to computation (using local storage) or moving computation closer to the data (running tests on EC2 instances)
— depending on the scenario requirements and cost analysis.

6. Conclusions and future work

In this paper we presented a component-based approach to computational science applications on cloud infras-
tructures. Based on our previous experience with grid component models and scientific applications, we discussed the
advantages and costs associated with using a component-based approach along with cloud resources. We proposed
the principles of a lightweight component model and prepared a prototype solution based on a high-level scripting
approach. The main principle is to consider virtual machines running on the cloud as components and the cloud as a
large-scale distributed container for hosting these components. Our prototype framework, which provides a high-level
API, consists of a set of Ruby-based libraries and was tested with a real application in a hybrid cloud environment.

The experiments demonstrated that the component-based approach can be effective in building and deploying
computational applications on the cloud. The measured overhead incurred by the component startup time as well as
the performance penalty caused by virtualization are negligible or at least reasonable, in our opinion not outweighing
the benefits of the possibility of creating computationally-intensive applications on demand.

M. Malawski et al. / Procedia Computer Science 00 (2011) 1-10 10

We consider this work as a preliminary insight into the potential possibilities of using our component-based
approach to solving computational science problems on the emerging cloud infrastructures. In the future we will
extend the framework to support more complex application scenarios, as well as parallel components by e.g. exploiting
the HPC cluster instances offered by Amazon and cluster-on-demand features of private cloud solutions such as those
available in Nimbus [13]. Better support for cloud heterogeneity and security is also worth investigating. These new
features should aim at providing a simple-to-use platform-as-a-service solution for computational science applications.
Last, but not least, optimization methods based on performance and cost metrics will be of great importance, since
the cloud introduces a business model which has to be taken into account by the computational science community.

Acknowledgments The authors are grateful to colleagues from PL-Grid, UrbanFlood and VPH-Share projects. We
thank Krzysztof Sarapata from CMUIJ for providing information about FASTA. We also thank Tomasz Gubata, Patryk
Lason and Piotr Nowakowski from ACC Cyfronet AGH for valubale discussions. We gratefully acknowledge the
help and support of Jamie Wilcox and Victor Gamayunov from Intel EMEA Technical Marketing HPC Lab. This
work was supported by UDA — POKL.04.01.01-00-367/08-00 grant from AGH. Access to the Amazon EC2 cloud
was supported by an AWS in Education grant.

References

[1] VPH-Share Project, Virtual physiological human: Sharing for healthcare - a research environment (2011-2015).

[2] SARA, Hpc cloud, https://grid.sara.nl/wiki/index.php/Using_the HPC_Cloud (2011).

[3] M. Malawski, D. Kurzyniec, V. Sunderam, MOCCA - towards a distributed CCA framework for metacomputing, in: IPDPS 2005, IEEE
Computer Society, 2005.

[4] R. Armstrong, et al., The CCA component model for high-performance scientific computing, Concurrency and Computation : Practice and
Experience 18 (2) (2006) 215-229. doi:http://dx.doi.org/10.1002/cpe.v18:2.

[5] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Pérez, Gem: a grid extension to fractal for autonomous distributed
components, Annales des Télécommunications 64 (1-2) (2009) 5-24.

[6] W.R. Pearson, D. J. Lipman, Improved tools for biological sequence comparison., Proc Natl Acad Sci U S A 85 (8) (1988) 2444-2448.

[7]1 U. Schwiegelshohn, R. M. Badia, M. Bubak, M. Danelutto, S. Dustdar, F. Gagliardi, A. Geiger, L. Hluchy, D. Kranzlmller, E. Laure, T. Priol,
A. Reinefeld, M. Resch, A. Reuter, O. Rienhoff, T. Rter, P. Sloot, D. Talia, K. Ullmann, R. Yahyapour, G. von Voigt, Perspectives on grid
computing, Future Generation Computer Systems 26 (8) (2010) 1104 — 1115.

[8] J. T. Dudley, A. J. Butte, In silico research in the era of cloud computing, Nature Biotechnology 28 (11) (2010) 1181-1185.

[9] E.Deelman, Grids and clouds: Making workflow applications work in heterogeneous distributed environments, International Journal of High
Performance Computing Applications 24 (3) (2010) 284-298.

[10] D. Thain, C. Moretti, Abstractions for Cloud Computing with Condor, CRC Press, 2010, pp. 153-171.

[11] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107-113.

[12] M. C. Schatz, CloudBurst: highly sensitive read mapping with MapReduce, Bioinformatics 25 (11) (2009) 1363—1369.

[13] K. Keahey, M. Tsugawa, A. Matsunaga, J. Fortes, Sky Computing, Internet Computing, IEEE 13 (5) (2009) 43-51.

[14] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: A view of scientific applicationsarXiv:0910.1979.

URL http://arxiv.org/abs/0910.1979

[15] B. Adler, RightScale Grid: Grid Computing Applications in the Cloud, Tech. rep., RightScale Inc. (2010).

[16] Object Management Group, Inc., CORBA Component Model, v4.0, http://www.omg.org/technology/documents/
formal/components.htm (2006).

[17] H.-L.Bouziane, C. Pérez, T. Priol, A software component model with spatial and temporal compositions for grid infrastructures, in: E. Luque,
T. Margalef, D. Benitez (Eds.), Euro-Par 2008 - Parallel Processing, 14th International Euro-Par Conference, Las Palmas de Gran Canaria,
Spain, August 26-29, 2008, Proceedings, Vol. 5168 of Lecture Notes in Computer Science, Springer, 2008, pp. 698—708.

[18] Y.Dong,S.Li, A. Mallick, J. Nakajima, K. Tian, X. Xu, F. Yang, W. Yu, Extending Xen with Intel Virtualization Technology, Intel Technology
Journal 10 (03) (2006) 193-204.

[19] J. P. Casazza, M. Greenfield, K. Shi, Redefining Server Performance Characterization for Virtualization Benchmarking, Intel Technology
Journal 10 (03) (2006) 243-252.

[20] E. Walker, Benchmarking Amazon EC2 for high-performance scientific computing, LOGIN 33 (5) (2008) 18-23.

[21] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga, D. Gannon, Cloud technologies for bioinformatics applications, in:
Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS ’09, ACM, New York, NY, USA, 2009.

[22] Amazon.com, Elastic compute cloud (EC2), aws . amazon. com/ec2 (2011).

[23] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The Eucalyptus open-source cloud-computing
system, in: 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), Vol. 0 of CCGRID 09, IEEE,
Washington, DC, USA, 2009, pp. 124-131.

[24] M. Malawski, T. Bartyniski, M. Bubak, Invocation of operations from script-based grid applications, Future Gener. Comput. Syst. 26 (1)
(2010) 138-146.

[25] E. Ciepiela, D. Harezlak, J. Kocot, T. Bartynski, M. Kasztelnik, P. Nowakowski, T. Gubata, M. Malawski, M. Bubak, Exploratory Program-
ming in the Virtual Laboratory, in: Proceedings of the International Multiconference on Computer Science and Information Technology,
Wisla, Poland, 2010, pp. 621-628.

